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Abstract. Recently, CUDA introduces a new task graph programming
model, CUDA graph, to enable efficient launch and execution of GPU
work. Users describe a GPU workload in a task graph rather than aggre-
gated GPU operations, allowing the CUDA runtime to perform whole-
graph optimization and significantly reduce the kernel call overheads.
However, programming CUDA graphs is extremely challenging. Users
need to explicitly construct a graph with verbose parameter settings or
implicitly capture a graph that requires complex dependency and con-
currency managements using streams and events. To overcome this chal-
lenge, we introduce a lightweight task graph programming framework to
enable efficient GPU computation using CUDA graph. Users can focus
on high-level development of dependent GPU operations, while leaving
all the intricate managements of stream concurrency and event depen-
dency to our optimization algorithm. We have evaluated our framework
and demonstrated its promising performance on both micro-benchmarks
and a large-scale machine learning workload. The result also shows that
our optimization algorithm achieves very comparable performance to an
optimally-constructed graph and consumes much less GPU resource.

1 Introduction

The performance of GPU architectures continues to increase with every new
generation. Modern GPUs are fast and, in many scenarios, the time taken by
each GPU operation (e.g., kernel or memory copy) is now measured in microsec-
onds. The overheads associated with the submission of each operation to the
GPU, also at the microsecond scale, are becoming significant and can dominate
the performance of a GPU algorithm. For instance, inferencing a large neural
network launches many dependent kernels on partitioned data and models. If
each of these operations is launched to the GPU separately and repetitively, the
overheads can combine to form a significant overall degradation to performance.
To address this issue, CUDA has recently introduced a new CUDA graph pro-
gramming model to enable efficient launch and execution of GPU work. CUDA
graph enables a define-once-run-repeatedly execution flow that reduces the over-
head of kernel launching. Users describe dependent GPU operations in a task
graph rather than aggregated single operations. The CUDA runtime can perform
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whole-graph optimization and launch the entire graph in a single CPU operation
to reduce overheads [4,5].

However, programming CUDA graphs is extremely challenging. First, users
can explicitly construct a CUDA graph that maps each vertex to a GPU oper-
ation and each edge to a dependency between two GPU operations. Explicit
CUDA graph construction is often the most efficient, but it requires all the
parameters known upfront, which is impossible for many high-performance third-
party libraries, such as cuSparse, cuBLAS, and cuDNN. Also, the CUDA runtime
maximally parallelizes the given CUDA graph without limiting the stream usage.
In large graphs, the GPU memory can explode. The second option is implicit
graph construction, which captures a CUDA graph using existing stream-based
application programming interfaces (APIs). Implicit CUDA graph construction
is more flexible and general, allowing users to manually allocate and control
streams. However, it requires users to wrangle with concurrency details through
events and streams that are known difficult to program correctly.

Consequently, we propose in this paper a lightweight task graph program-
ming framework to enable efficient GPU computation using CUDA graph. Our
framework introduces an expressive GPU task graph programming model for
users to focus on high-level development of dependent GPU operations with
relatively ease of programming. A written task graph is then cast to a native
CUDA graph through our transformation algorithm optimized for kernel concur-
rency and graph size. The process is transparent. Users need not to handle any
intricate concurrency details and dependency controls using streams and events.
More importantly, we identify a research problem of optimizing CUDA graphs
through stream capturers. The proposed research can assist CUDA developers
in improving the performance of existing GPU applications through new CUDA
graph parallelism.

2 The Proposed GPU Task Graph Programming Model

Our GPU task graph programming model consists of two parts, cudaFlow and
cudaFlowCapturer, to handle explicit and implicit graph constructions in differ-
ent use cases.

2.1 cudaFlow: Explicit CUDA Graph Construction

Fig. 1. An example of
GPU task graph.

cudaFlow provides methods for users to explicitly con-
struct a GPU task graph that presents a one-to-one
mapping to a native CUDA graph. Each node in the
task graph represents a GPU operation (copy, kernel,
etc.), and each edge represents a dependency between
two operations. Figure 1 shows a GPU task graph of
seven nodes (two kernels, k1 and k2, two typed copies,
h2d and d2h, two untyped copies, ms1 and ms2, and
one host callback, callback) and six dependencies
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(e.g., k1→k2). Listing 1.1 gives the implementation of Fig. 1 using our model.
We create a cudaFlow object (cf) and use the four methods, kernel, memset,
copy, and host, to create the seven task graph nodes and use the two methods,
succeed and precede, to relate dependencies between nodes. The code explains
itself through an expressive graph description language in just 12 lines of code.
The same example but written in the plain CUDA graph model is partially
shown in Listing 1.2, which requires more than 150 lines of code.

Listing 1.1. Example code of Fig. 1 using cudaFlow.

cudaFlow cf;
cudaTask h2d = cf.copy(inputVec d, inputVec h, inputSize);
cudaTask ms1 = cf.memset(outputVec d, 0, input size);
cudaTask ms2 = cf.memset(result d, 0, 1);
cudaTask k1 = cf.kernel(reduce, inputVec d, outputVec d, inputSize);
cudaTask k2 = cf.kernel(reduce final, outputVec d, result d);
cudaTask d2h = cf.copy(result h, result d, 1);
cudaTask callback = cf.host(fn, &hostFnData);
k1.succeed(h2d, ms1);
k2.succeed(k1, ms2);
k2.precede(d2h);
d2h.precede(callback);

Listing 1.2. Example code of Fig. 1 using the plain CUDA graph.

cudaStream t streamForGraph;
cudaGraph t graph;

std::vector<cudaGraphNode t> nodeDependencies;
cudaGraphNode t memcpyNode, kernelNode, memsetNode;

checkCudaErrors(cudaStreamCreate(&streamForGraph));

cudaKernelNodeParams kernelNodeParams = {0};
cudaMemcpy3DParms memcpyParams = {0};
cudaMemsetParams memsetParams = {0};
memcpyParams.srcArray = NULL;
memcpyParams.srcPos = make cudaPos(0, 0, 0);

memcpyParams.srcPtr =

make cudaPitchedPtr(inputVec h, sizeof(float) ∗ inputSize, inputSize, 1);
memcpyParams.dstArray = NULL;

memcpyParams.dstPos = make cudaPos(0, 0, 0);
memcpyParams.dstPtr =

make cudaPitchedPtr(inputVec d, sizeof(float) ∗ inputSize, inputSize, 1);

memcpyParams.extent = make cudaExtent(sizeof(float) ∗ inputSize, 1, 1);
memcpyParams.kind = cudaMemcpyHostToDevice;

checkCudaErrors(cudaGraphCreate(&graph, 0));
checkCudaErrors(
cudaGraphAddMemcpyNode(&memcpyNode, graph, NULL, 0, &memcpyParams

));
//... more than 100 lines of code to follow
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2.2 cudaFlowCapturer: Implicit CUDA Graph Construction

cudaFlow allows users to explicitly construct a CUDA graph, but it requires
all execution parameters known in advance. This property restricts users from
using commercial CUDA libraries, such as cuDNN and cuBLAS, that do not pro-
vide details for launching kernels but a public stream-based API. To overcome
this restriction, we introduce cudaFlowCapturer with a stream-based method to
capture GPU kernels and transform the given task graph into a native CUDA
graph using our graph transformation algorithm. Listing 1.3 shows the cudaFlow-
Capturer code of Fig. 1, assuming the two kernels, k1 and k2, are only invokable
through a stream-based API. The cudaFlowCapture provides a method, on, that
passes a stream created by our optimizer to the callable for users to capturer
kernels or other asynchronous GPU operations.

Listing 1.3. Example code of Fig. 1 using cudaFlowCapturer.

cudaFlowCapturer cap;
cudaTask h2d = cap.copy(inputVec d, inputVec h, inputSize);
cudaTask ms1 = cap.memset(outputVec d, 0, input size);
cudaTask ms2 = cap.memset(result d, 0, 1);
cudaTask k1 = cap.on([&](cudaStream t stream){

cublas gemm(stream, my paremeters...);
});
cudaTask k2 = cap.on([&](cudaStream t stream){

cublas gemv(stream, my paremeters...);
});
cudaTask d2h = cap.copy(result h, result d, 1);
cudaTask callback = cf.host(fn, &hostFnData);
k1.succeed(h2d, ms1);
k2.succeed(k1, ms2);
k2.precede(d2h);
d2h.precede(callback);

3 Transform a cudaFlowCapturer to a CUDA Graph

By default, we translate a cudaFlow directly into a native CUDA graph and
use a single CPU call to offload the graph. To launch a cudaFlowCapturer, we
need to transform the task graph defined in the cudaFlowCapturer into a native
CUDA graph using stream capturer.

3.1 Problem Formulation

We describe the transformation problem as follows: Given a task graphGt and the
number of streams (num streams), discover an order to construct dependencies
between nodes, i.e., assign each node n ∈ Gt to a stream and decide an event for
each node such that the execution order of tasks (“transformed CUDA graph”)
imposed by the streams and events is topologically identical to the original task
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graph. The objective is to balance the load of each stream and minimize the trans-
formed graph size. For example, using two streams, the task graph in Fig. 2(a) can
be transformed into two different CUDA graphs, (b) and (c), both resulting in dif-
ferent critical paths and graph sizes. CUDA stream is in-order. Placing two depen-
dent nodes at two different streams may require creating an event to build a depen-
dency in the CUDA graph, as shown in the red points. Since the optimal number of
streams is highly dependent on application level, we leave num streams to users
to tune the number of streams based on their applications.

Fig. 2. Transformation of a task graph to
a CUDA graph using two streams. (Color
figure online)

This transformation problem has two
challenges: Firstly, CUDA stream cap-
ture is stateful [1]. We can only con-
struct a dependency in one direction
from an assigned node to the node that
is being enqueued to a stream. That is,
optimizing the event count and, hence,
the graph size, through back-and-forth
traversal is not possible. Second, graph
size matters. The same task graph can
have many feasible transformations (see
Fig. 2). Different transformations result
in different execution efficiencies.

3.2 Our Algorithm: Round Robin with Dependency Pruning

At a high level, our algorithm assigns each node to a stream in a round-robin
fashion and applies a dependency pruning to reduce redundant dependencies.
We use Fig. 3 to illustrate our algorithm transforming the task graph of Fig. 2(a)
to a CUDA graph using two streams. First, we levelize the task graph, Gt, to
a 2D level list. Based on the 2D level list, we assign each node ni to indicate
the index of the topological ordering of Gt, and ni.lid to indicate the index of
its level (see Fig. 2(a)). We assign each node to a stream of id equal to (ni.lid+
1)%num streams+1 as a result of the round-robin. For example, n4 is assigned
to stream s2 (i.e., (2 + 1)%2 + 1). Assigning nodes in a round-robin manner at
each level facilitates load balancing because nodes are evenly distributed across
streams. The motivation of levelization is to implicitly capture dependencies
between levels using the same stream. For instance, the dependency between n1

and n3 is implicitly captured by s1.
We iterate each node level by level to perform three steps: construct depen-

dencies, assign stream, and decide an event. At the first level, since n1 does not
have predecessors, we assign it to s1 (Fig. 3(a)). We then check if any of n1’s
successors (n3, n4, n5) will be assigned to the different stream, s2. Since n4 will
be assigned to s2, we need to create an event for n1 so that the later iteration
can wait on it to create a dependency edge (Fig. 3(b)). At the second level, since
n3 is assigned to the same stream as its predecessor, n1, we do not create a
dependency from n3 to n1; but, we create an event for n3 because its successor
n7 will be assigned to s2, as shown in Fig. 3(c). Figure 3(d) and (e) show the
process of n4. Since n4 is assigned to the different stream from it’s predecessor,
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Fig. 3. Illustration of our algorithm on Fig. 2 using two streams.

n1, we need to create a dependency before assigning n4 to s2 by waiting on n1’s
event. The same procedure continues until we iterate all nodes. Our dependency
pruning happens at assigning n7 to s2 (Fig. 3(g) and (h)). n7’s predecessors, n3

and n5, are both assigned to s1. We only construct a dependency from n5 to
n7 since n5 is guaranteed to be executed after n3 in the same stream, s1. This
pruning reduces redundant dependencies. The transformed CUDA graph from
this assignment is shown in Fig. 3(i).

Algorithm 1 presents the details of our algorithm. We iterate all nodes at
each level to perform the three tasks: construct dependencies, assign stream, and
decide an event. For simplicity, n.idx represents ni’s index, i.

Construct Dependencies (Lines 6–19): We construct dependencies from
n’s predecessor, pred, to n. Since n’s predecessors may be assigned to the same
stream that implicitly capturers sequential order of enqueued nodes, we only
need to construct a dependency from the last assigned predecessor, last assign,
to n and prune the other dependencies starting from n’s predecessors that is
assigned to the same stream.

Assign Stream (Line 20) & Decide an Event (Lines 21–30): We assign
n to ssid, where sid is the id of the stream assigned to n. We decide an event by
checking whether n is assigned to a different stream from one of its successors,
suc. If true, we create and record an event for n so that suc can construct a
dependency from n to suc at the later iteration. We further assign suc.sm to
ssid for dependency pruning that happened in the later construct dependencies
stage.



Efficient GPU Computation Using Task Graph Parallelism 441

Algorithm 1: Round Robin with Dependency Pruning.
Input: num streams: number of streams
Input: graph: task graph defined by users
/* create streams... */

1 levelized ← levelize(graph)
2 for each level graph in levelized do
3 for n in each level graph do
4 sid ← (n.lid + 1)%num streams + 1
5 last assign ← null
6 for pred in n.predecessors do
7 psid ← (pred.lid + 1)%num streams + 1
8 if spsid == n.sm then
9 if last assign == null or last assign.idx < pred.idx then

10 last assign = pred

11 end

12 end
13 else if spsid != ssid then
14 cudaStreamWaitEvent(ssid, pred.event)
15 end

16 end
17 if last assign != null then
18 cudaStreamWaitEvent(ssid, last assign.event)

19 end
20 n.assign(ssid)
21 for suc in n.successors do
22 ssid = (suc.lid + 1)%num streams + 1
23 if sssid != ssid then
24 if n.event == null then
25 cudaCreateEvent(n.event)
26 cudaEventRecord(n.event, ssid)

27 end
28 suc.sm ← ssid
29 end

30 end

31 end

32 end

4 Experimental Results

We evaluate the performance of cudaFlow and cudaFlowCapturer on (1) five
micro-benchmarks1 that are representative for many GPU algorithm patterns,
and (2) a large-scale machine learning workload directly derived from the 2020
champion of the HPEC Sparse Deep Neural Network (DNN) Inference Chal-
lenge [24]. Both cudaFlow and cudaFlowCapturer have different use cases that

1 Source code: https://github.com/dian-lun-lin/cudaFlow-benchmarks.
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complement each other. The purpose of our experiment is not to demonstrate
which one outperforms another but to highlight that our transformation algo-
rithm can achieve comparable performance (or even better) to the optimally-
constructed CUDA graph when explicit graph construction is not possible. By
default, we transform a cudaFlow into a CUDA graph of the same topology
because all kernel execution parameters are known up-front. In cudaFlowCap-
turer, we use RR1, RR2, RR4, and RR8 to represent our algorithm using 1, 2, 4,
and 8 streams in the round-robin loop, respectively. To demonstrate the effective-
ness of our dependency pruning, RR4− and RR8− represent our algorithm with-
out dependency pruning under 4 and 8 streams. We do not report RR1− and RR2−

because redundant dependencies only occur between nodes that are assigned to
different streams. Using one or two streams creates few redundant dependencies.
All experiments ran on a Ubuntu Linux 5.0.0-21-generic x86 64-bit machine with
40 Intel Xeon Gold 6138 CPU cores at 2.00 GHz, one GeForce RTX 2080 Ti GPU
with 11 GB memory, and 256 GB RAM. We compiled all programs using Nvidia
CUDA nvcc 11.1 on a host compiler of GNU GCC-9.2.1 with C++17 standards
and optimization flags -O2 enabled. All data is an average of ten runs.

4.1 Micro-benchmarks

We consider five common GPU task graphs as our micro-benchmarks: linear
chain (LC), embarrassing parallelism (EP), map-reduce (MR), divide and con-
quer (DC), and random DAG. LC task graph defines a sequence of sequentially
dependent nodes. EP task graph defines only independent nodes. MR task graph
defines several iterations each of 16 mappers and one reducer. DC task graph
defines a complete binary tree. Random DAG defines a more generalized task
graph; we randomly generate up to 50 nodes at each level and create at most
five edges per node between successive levels. For all benchmarks, each node
contains three sequential GPU operations: host-to-device (H2D) copy, reduction
kernel, and device-to-host (D2H) copy. H2D operation first copies 220 integers
from CPU to GPU, the reduction kernel performs parallel sum reduction on all
elements, and D2H operation copies the reduced sum from GPU to CPU. We
focus on large GPU work where the effect of task graph parallelism is significant.

Performance Comparison. Table 1 compares the native CUDA graph size
(#nodes+#edges) of each benchmark among cudaFlow and cudaFlowCapturer
of different stream counts. Apparently, all methods have the same CUDA graph
size in the LC task graph. cudaFlowCapturer has a larger CUDA graph size than
cudaFlow in the EP task graph, since our algorithm assigns independent nodes
to streams that implicitly capture the sequential execution order of enqueued
nodes. The same situation happens in the DC task graph, where the number
of independent nodes grows exponentially over levels. The CUDA graph size of
DC, MR, and random DAG task graphs using cudaFlowCapturer become larger
as we increase the number of streams. In our algorithm, more streams can have
higher concurrency. However, it may result in more events to implicitly capture
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Table 1. Comparison of CUDA graph sizes (#nodes+#edges) on linear chain, embar-
rassing parallelism, divide and conquer, map-reduce, and random DAG task graphs
between cudaFlow and cudaFlowCapturer under different stream numbers 1 (RR1), 2
(RR2), 4 (RR4), and 8 (RR8). RR4− and RR8− represent our algorithm without the
dependency pruning.

Task graph cudaFlow cudaFlowCapturer

RR1 RR2 RR4 RR4− RR8 RR8−

Linear chain (65536 nodes) 393215 393215 393215 393215 393215 393215 393215

Embarrassing parallelism (65536 nodes) 327680 393215 393214 393212 393212 393208 393208

Divide and conquer (16 levels) 393209 393209 425975 442356 442356 450543 450543

Map-reduce (1024 iterations) 119813 104453 113668 125954 129026 132094 133118

Random DAG (512 levels) 103316 77893 86981 99217 104084 107822 112182

Random DAG (1024 levels) 207552 155437 169574 201875 214088 217454 226009

Random DAG (2048 levels) 410639 311453 347290 403291 423119 437859 447629

Random DAG (4096 levels) 832298 628715 693860 808276 857334 859342 892507

Table 2. Comparison of the number of streams issued by the CUDA runtime to run
each task graph between cudaFlow and cudaFlowCapturer.

Task graph cudaFlow cudaFlowCapturer

RR1 RR2 RR4 RR8

Linear chain (65536 nodes) 12 12 13 15 19

Embarrassing parallelism (65536 nodes) 65547 12 14 18 26

Divide and conquer (16 levels) 32779 12 14 18 26

Map-reduce (1024 iterations) 15372 12 14 18 26

Random DAG (512 levels) 5318 12 80 244 559

Random DAG (1024 levels) 10547 12 150 440 1106

Random DAG (2048 levels) 21116 12 263 888 2213

Random DAG (4096 levels) 42545 12 522 1757 4348

the dependencies of the original task graph. Our dependency pruning shows a
significant effect on reducing the CUDA graph size in MR and random DAG
task graphs. For example, the CUDA graph size on Random DAG with 4096
levels using RR8 is 5.7% smaller than RR8−. This is because MR and random
DAG task graphs contain nodes that have more dependencies than others.

Table 2 compares the number of streams issued by the CUDA runtime to
run each task graph. cudaFlow consumes much larger numbers of streams than
cudaFlowCapturer on all benchmarks except the LC graph. By default, cudaFlow
keeps a one-to-one mapping between the task graph and the CUDA graph. The
CUDA runtime will issue as many streams as possible to maximize the task
concurrency, whereas cudaFlowCapturer transforms the task graph into CUDA
graph with a limited number of streams.

Figure 4 shows the execution time (including CUDA graph construction time)
of each benchmark. Since LC task graph contains only sequential nodes, all
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Fig. 4. Execution time of each task graph at different task graph sizes running on
cudaFlow and cudaFlowCapturer of RR1, RR2, RR4, and RR8.
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Fig. 5. Comparison of peak GPU memory usage of each task graph at different task
graph sizes between cudaFlow and cudaFlowCapturer.

methods have almost the same execution time. RR4, RR8, and cudaFlow are
faster than RR1 and RR2 in all other task graphs, because more streams have
higher concurrency that leads to faster execution time. Figure 5 compares the
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Fig. 6. (a) Task granularity and (b) co-run of random DAG running on cudaFlow and
cudaFlowCapturer.

peak GPU memory usage of each benchmark at different task graph size running
on cudaFlow and cudaFlowCapturer. We only compare cudaFlow with RR4 in
LC, EP, DC, and MR task graphs since RR1, RR2, RR4, and RR8 have almost
the same GPU memory usage in these task graphs. The GPU memory usage of
cudaFlow is much higher than cudaFlowCapturer on all benchmarks except the
LC task graph. In EP task graph, cudaFlow consumes 2.1× more GPU memory
than cudaFlowCapturer. This is because the CUDA runtime does not limit the
number of streams to run CUDA graphs. Figure 6(a) compares the execution
time under different task sizes. Task size is the number of elements computed at
each node. cudaFlow and RR8 become faster than the others when the task size
grows. Compared to lightweight tasks with the same stream count, heavy tasks
benefit more from higher kernel concurrency.

Next, we study the throughput of co-running multiple GPU graphs. The
motivation is to emulate a server-like environment where multiple client GPU
programs run concurrently on the same machine. We consider four co-run pro-
cesses each executing one random DAG with the same number of levels. The
throughput is defined as the execution time of running one process over the
execution time of running four processes concurrently [16]. A throughput of 1
implies that the co-run’s throughput is the same as if the processes were run
consecutively. Figure 6(b) compares the throughput of each method. RR4 pro-
duces the highest throughput than others, whereas cudaFlow runs out of GPU
memory due to unlimited streams.

4.2 Machine Learning: Large Sparse Neural Network Inference

The second experiment compares the performance of our transformation algo-
rithm with an optimally-constructed CUDA graph (i.e., cudaFlow) using a large-
scale machine learning workload from the IEEE HPEC Graph Challenge 2020.
The challenge is to inference extremely large sparse DNN models. We rearchi-
tect the CUDA graph-based champion solution in [24] using cudaFlow and
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Fig. 7. [24] describes the inference workload in a task graph. A blue node represents a
memory copy, and a red node represents a kernel. (Color figure online)

cudaFlowCapturer. We run the experiment on six DNN models composed of
different neurons and layers. The statistics of each DNN and its modeled task
graph size are summarized in Table 3. Figure 7 shows a partial task graph of the
inference workload.

Table 3. The modeled task graph size (#nodes+#edges) and the statistics of each
DNN benchmark (model size and image nonzeros).

Neurons/layers 120 480 1920 Model size Image nonzeros

4096 599 2399 9599 5.40 GB 25,019,051

65536 599 2399 9599 94.70 GB 392,191,985

Table 4. Comparison of the execution time between cudaFlow and cudaFlowCapturer
for completing six DNN models.

#Neurons #Layers cudaFlow cudaFlowCapturer

RR1 RR2 RR4 RR8

4096 120 1.61 1.34 1.19 1.20 1.19

480 4.70 4.74 4.19 4.19 4.20

1920 17.41 19.14 17.08 17.14 17.15

65536 120 14.78 15.99 14.06 14.06 14.05

480 43.00 50.59 42.92 42.81 42.90

1920 162.20 193.11 162.12 162.35 162.30

Performance Comparison. Table 4 compares the execution time (in seconds)
of each benchmark using cudaFlow and cudaFlowCapturer at different stream
numbers. All methods except RR1 have similar execution time across all DNNs.
We observe cudaFlowCapturer of two streams finishes the inference workload
with comparable performance of cudaFlow. Using four or eight streams does not
decrease the runtime. Table 5 compares the number of streams issued by the
CUDA runtime. cudaFlow consumes a similar number of streams to cudaFlow-
Capturer. This is because the maximum degree of concurrency in this particular
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Table 5. Comparison of number of streams issued by the CUDA runtime between
cudaFlow and cudaFlowCapturer for completing six DNN models.

#Neurons #Layers cudaFlow cudaFlowCapturer

RR1 RR2 RR4 RR8

4096 120 35 23 36 38 42

480 35 23 36 38 42

1920 35 23 36 38 42

65536 120 35 23 36 38 42

480 35 23 36 38 42

1920 35 23 36 38 42
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Fig. 8. Comparison of peak GPU memory usage at different number of layers between
cudaFlow and cudaFlowCapturer (RR4).

task graph is around two, and the CUDA runtime will not consume too many
streams to maximize the parallelism. Figure 8 compares the peak GPU memory
usage at different numbers of layers. Both methods have almost the same peak
GPU memory usage due to similar stream usage. This experiment demonstrates
the efficiency of our transformation algorithm.

5 Related Work

[2,28] presents a compiler transformation method that translates OpenMP code
into CUDA graphs. However, their transformation method only considers explicit
graph construction. Our work offers users both explicit graph construction APIs
(cudaFlow) and implicit graph construction APIs (cudaFlowCapturer) using our
scheduling algorithm. [25] proposes a compiler-based approach that combines
CUDA graph with an image processing DSL and a source-to-source compiler
called Hipacc. Their kernel pipelining approach optimizes the schedule specifi-
cally for the scattering-pattern applications. [9] presents the Hybrid Task Graph
Scheduler (HTGS) to aid in building hybrid workflows for high performance
image processing. This architecture is different from our model that can handle
and schedule arbitrary GPU task graphs.
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Graph-based model is extensively studied on CPU-parallel architectures.
Just name a few: Cpp-Taskflow [15,16,19,20,22,23] develops a simple and pow-
erful task programming model enabling efficient implementations of heteroge-
neous decomposition strategies. PaRSEC [10] expresses applications as DAG of
tasks with labeled edges designating data dependencies. It provides a generic
framework for architecture-aware scheduling and management of micro-tasks on
distributed many-core heterogeneous architectures. Kokkos [11] uses functional
approaches to offer task graph constructions. It enables applications to achieve
performance portability on diverse many-core architectures. Legion [8] describes
a runtime system that dynamically extracts parallelism from Legion programs,
using a distributed, parallel scheduling algorithm that identifies both indepen-
dent tasks and nested parallelism. These models have their own pros and cons,
but they do not target GPU graph parallelism.

Another line of related work to our transformation algorithm is the removal of
redundant dependencies in DAGs. A common category is transitive reduction in
graph theory. Alfred V. Aho et al. [6] propose algorithms for transitive reduction
based on matrix multiplication. Other work [7,14,26,27,29,30] focuses on DAG
traversal that processes each node separately. However, it is unknown how these
algorithms can apply to our problem domain, in which the stateful property of
CUDA stream constrains the order of dependency construction.

6 Conclusion

In this paper, we have introduced a lightweight task graph programming frame-
work, cudaFlow and cudaFlowCapturer, to enable efficient GPU computation
using CUDA graph in different scenarios. In five micro-benchmarks and a real
machine learning workload, our transformation algorithm achieves comparable
performance to the optimally-constructed CUDA graph and consumes much less
GPU resource. The source of our programming model is available in [3].

7 Future Work

Future work includes applying reinforcement learning to find an optimal (near-
optimal) scheduling solution and choose the optimal number of streams. An
optimal scheduling solution varies due to not only different applications, but
also different hardware specifications (e.g., GPUs) and different software (e.g.,
CUDA runtime). We plan to deploy a learning-based algorithm to learn from
user environments and find optimal (near-optimal) scheduling solutions. Another
line of future work is to extend our work to multiple GPUs. For example, we
plan to introduce new stream management algorithms for multiple CUDA graphs
that can run in parallel. On the application sides, we plan to use the proposed
cudaFlow to solve large-scale simulation workloads in VLSI designs [12,13,17,
18,21] and machine learning [24].
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