
Taskflow: A Lightweight Parallel and
Heterogeneous Task Graph Computing System

Tsung-Wei Huang , Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin ,Member, IEEE

Abstract—Taskflow aims to streamline the building of parallel and heterogeneous applications using a lightweight task graph-based

approach. Taskflow introduces an expressive task graph programming model to assist developers in the implementation of parallel and

heterogeneous decomposition strategies on a heterogeneous computing platform. Our programming model distinguishes itself as a

very general class of task graph parallelism with in-graph control flow to enable end-to-end parallel optimization. To support our model

with high performance, we design an efficient system runtime that solves many of the new scheduling challenges arising out of our

models and optimizes the performance across latency, energy efficiency, and throughput. We have demonstrated the promising

performance of Taskflow in real-world applications. As an example, Taskflow solves a large-scale machine learning workload up to 29%

faster, 1.5� less memory, and 1.9� higher throughput than the industrial system, oneTBB, on a machine of 40 CPUs and 4 GPUs. We

have opened the source of Taskflow and deployed it to large numbers of users in the open-source community.

Index Terms—Parallel programming, task parallelism, high-performance computing, modern C++ programming

Ç

1 INTRODUCTION

TASK graph computing system (TGCS) plays an essential
role in advanced scientific computing. Unlike loop-based

models, TGCSs encapsulate function calls and their depen-
dencies in a top-down task graph to implement irregular par-
allel decomposition strategies that scale to large numbers of
processors, including manycore central processing units
(CPUs) and graphics processing units (GPUs). As a result,
recent years have seen a great deal amount of TGCS research,
just name a few, oneTBB FlowGraph [2], StarPU [17],
TPL [39], Legion [18], Kokkos-DAG [24], PaRSEC [20],
HPX [33], and Fastflow [15]. These systems have enabled
vast success in a variety of scientific computing applications,
such asmachine learning, data analytics, and simulation.

However, three key limitations prevent existing TGCSs
from exploring the full potential of task graph parallelism.
First, existing TGCSs closely rely on directed acyclic graph
(DAG)models to define tasks anddependencies. Users imple-
ment control-flow decisions outside the graph description,
which typically results in rather complicated implementa-
tions that lack end-to-end parallelism. For instance, when
encountering an if-else block, users need to synchronize the
graph executionwith a TGCS runtime, which could otherwise

be omitted if in-graph control-flow tasks are supported. Sec-
ond, existing TGCSs do not alignwell withmodern hardware.
In particular, newGPU task graph parallelism, such as CUDA
Graph, can bring significant yet largely untapped perfor-
mance benefits. Third, existing TGCSs are good at either
CPU- or GPU-focused workloads, but rarely both simulta-
neously. Consequently, we introduce in this paper Taskflow, a
lightweight TGCS to overcome these limitations. We summa-
rize threemain contributions of Taskflow as follows:

� Expressive programming model – We design an expres-
sive task graph programming model by leveraging
modern C++ closure. Our model enables efficient
implementations of parallel and heterogeneous
decomposition strategies using the task graph
model. The expressiveness of our model lets devel-
opers perform rather a lot of work with relative ease
of programming. Our user experiences lead us to
believe that, although it requires some effort to learn,
a programmer can master our APIs needed for many
applications in just a few hours.

� In-graph control flow – We design a new conditional
tasking model to support in-graph control flowbeyond
the capability of traditional DAG models that prevail
in existing TGCSs. Our condition tasks enable devel-
opers to integrate control-flow decisions, such as
conditional dependencies, cyclic execution, and non-
deterministic flows into a task graph of end-to-end
parallelism. In case applications have frequent
dynamic behavior, such as optimization and branch
and bound, programmers can efficiently overlap
tasks both inside and outside the control flow to hide
expensive control-flow costs.

� Heterogeneous work stealing – We design an efficient
work-stealing algorithm to adapt the number of
workers to dynamically generated task parallelism
at any time during the graph execution. Our

� Tsung-Wei Huang and Dian-Lun Lin are with the Department of Electri-
cal and Computer Engineering, University of Utah, Salt Lake City, UT
84112 USA. E-mail: twh760812@gmail.com, dian-lun.lin@utah.edu.

� Chun-Xun Lin is with the MathWorks, Natick, MA 01760 USA.
E-mail: artiferlly@gmail.com.

� Yibo Lin is with the Department of Computer Science, Peking University,
Beijing 100871, China. E-mail: yibolin@utexas.edu.

Manuscript received 12 Apr. 2021; revised 4 Aug. 2021; accepted 6 Aug. 2021.
Date of publication 11 Aug. 2021; date of current version 25 Oct. 2021.
The work was supported in part by DARPA under Contract FA 8650-18-2-7843
and in part by NSF under Grant CCF-2126672.
(Corresponding author: Tsung-WeiHuang.)
Recommended for acceptance byH. E. Bal.
Digital Object Identifier no. 10.1109/TPDS.2021.3104255

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022 1303

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0002-0977-2774
mailto:twh760812@gmail.com
mailto:dian-lun.lin@utah.edu
mailto:artiferlly@gmail.com
mailto:yibolin@utexas.edu

algorithm prevents the graph execution from
underutilized threads that is harmful to perfor-
mance, while avoiding excessive waste of thread
resources when available tasks are scarce. The result
largely improves the overall system performance,
including latency, energy usage, and throughput.
We have derived theory results to justify the effi-
ciency of our work-stealing algorithm.

We have evaluated Taskflow on real-world applications
to demonstrate its promising performance. As an example,
Taskflow solved a large-scale machine learning problem up
to 29% faster, 1.5� less memory, and 1.9� higher through-
put than the industrial system, oneTBB [2], on a machine of
40 CPUs and 4 GPUs. We believe Taskflow stands out as a
unique system given the ensemble of software tradeoffs and
architecture decisions we have made. Taskflow is open-
source at GitHub under MIT license and is being used by
many academic and industrial projects [10].

2 MOTIVATIONS

Taskflow is motivated by our DARPA project to reduce the
long design times of modern circuits [1]. The main research
objective is to advance computer-aided design (CAD) tools
with heterogeneous parallelism to achieve transformational
performance and productivity milestones. Unlike tradi-
tional loop-parallel scientific computing problems, many
CAD algorithms exhibit irregular computational patterns and
complex control flow that require strategic task graph decom-
positions to benefit from heterogeneous parallelism [28].
This type of complex parallel algorithm is difficult to imple-
ment and execute efficiently using mainstream TGCS. We
highlight three reasons below, end-to-end tasking, GPU task
graph parallelism, and heterogeneous runtimes.

End-to-End Tasking. Optimization engines implement
various graph and combinatorial algorithms that frequently
call for iterations, conditionals, and dynamic control flow.
Existing TGCSs [2], [7], [12], [17], [18], [20], [24], [33], [39],
closely rely on DAGmodels to define tasks and their depen-
dencies. Users implement control-flow decisions outside the
graph description via either statically unrolling the graph
across fixed-length iterations or dynamically executing an
“if statement” on the fly to decide the next path and so forth.
These solutions often incur rather complicated implementa-
tions that lack end-to-end parallelism using just one task
graph entity. For instance, when describing an iterative
algorithm using a DAG model, we need to repetitively wait
for the task graph to complete at the end of each iteration.
This wait operation is not cheap because it involves syn-
chronization between the application code and the TGCS
runtime, which could otherwise be totally avoided by sup-
porting in-graph control-flow tasks. More importantly,
developers can benefit by making in-graph control-flow
decisions to efficiently overlap tasks both inside and outside
control flow, completely decided by a dynamic scheduler.

GPU Task Graph Parallelism. Emerging GPU task graph
acceleration, such as CUDAGraph [4], can offer dramatic yet
largely untapped performance advantages by running a
GPU task graph directly on a GPU. This type of GPU task
graph parallelism is particularly beneficial for many large-
scale analysis and machine learning algorithms that

compose thousands of dependent GPU operations to run on
the same task graph using iterative methods. By creating an
executable image for a GPU task graph, we can iteratively
launch it with extremely low kernel overheads. However,
existing TGCSs are short of a generic model to express and
offload task graph parallelism directly on a GPU, as opposed
to a simple encapsulation of GPU operations into CPU tasks.

Heterogeneous Runtimes. Many CAD algorithms compute
extremely large circuit graphs. Different quantities are often
dependent on each other, via either logical relation or physi-
cal net order, and are expensive to compute. The resulting
task graph in terms of encapsulated function calls and task
dependencies is usually very large. For example, the task
graph representing a timing analysis on a million-gate
design can add up to billions of tasks that take several hours
to finish [32]. During the execution, tasks can run on CPUs
or GPUs, or more frequently a mix. Scheduling these hetero-
geneously dependent tasks is a big challenge. Existing run-
times are good at either CPU- or GPU-focused work but
rarely both simultaneously.

Therefore, we argue that there is a critical need for a new
heterogeneous task graph programming environment that
supports in-graph control flow. The environment must han-
dle new scheduling challenges, such as conditional depen-
dencies and cyclic executions. To this end, Taskflow aims to
(1) introduce a new programming model that enables end-
to-end expressions of CPU-GPU dependent tasks along with
algorithmic control flow and (2) establish an efficient system
runtime to support our model with high performance across
latency, energy efficiency, and throughput. Taskflow focuses
on a single heterogeneous node of CPUs andGPUs.

3 PRELIMINARY RESULTS

Taskflow is established atop our prior system, Cpp-Task-
flow [32] which targets CPU-only parallelism using a DAG
model, and extends its capability to heterogeneous comput-
ing using a new heterogeneous task dependency graph (HTDG)
programming model beyond DAG. Since we opened the
source of Cpp-Taskflow/Taskflow, it has been successfully
adopted by much software, including important CAD proj-
ects [14], [30], [43], [54] under the DARPA ERI IDEA/POSH
program [1]. Because of the success, we are recently invited
to publish a 5-page TCAD brief to overview how Taskflow
address the parallelization challenges of CAD work-
loads [31]. For the rest of the paper, we will provide com-
prehensive details of the Taskflow system from the top-
level programming model to the system runtime, including
several new technical materials for control-flow primitives,
capturer-based GPU task graph parallelism, work-stealing
algorithms and theory results, and experiments.

4 TASKFLOW PROGRAMMING MODEL

This section discusses five fundamental task types of Task-
flow, static task, dynamic task, module task, condition task, and
cudaFlow task.

4.1 Static Tasking

Static tasking is the most basic task type in Taskflow. A
static task takes a callable of no arguments and runs it. The

1304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

callable can be a generic C++ lambda function object, bind-
ing expression, or a functor. Listing 1 demonstrates a simple
Taskflow program of four static tasks, where A runs before B
and C, and D runs after B and C. The graph is run by an exec-
utor which schedules dependent tasks across worker
threads. Overall, the code explains itself.

Listing 1. A task graph of four static tasks.

tf::Taskflow taskflow;

tf::Executor executor;

auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << “Task A”; },

[] () { std::cout << “Task B”; },

[] () { std::cout << “Task C”; },

[] () { std::cout << “Task D”; }

);

A.precede(B, C); // A runs before B and C

D.succeed(B, C); // D runs after B and C

executor.run(tf).wait();

4.2 Dynamic Tasking

Dynamic tasking refers to the creation of a task graph dur-
ing the execution of a task. Dynamic tasks are spawned
from a parent task and are grouped to form a hierarchy
called subflow. Fig. 1 shows an example of dynamic tasking.
The graph has four static tasks, A, C, D, and B. The prece-
dence constraints force A to run before B and C, and D to run
after B and C. During the execution of task B, it spawns
another graph of three tasks, B1, B2, and B3, where B1 and
B2 run before B3. In this example, B1, B2, and B3 are
grouped to a subflow parented at B.

Listing 2. Taskflow code of Fig. 1.

auto [A, C, D] = taskflow.emplace(

[] () { std::cout << “A”; },

[] () { std::cout << “C”; },

[] () { std::cout << “D”; }

);

auto B = tf.emplace([] (tf::Subflow& subflow) {

std::cout << “B\n“;

auto [B1, B2, B3] = subflow.emplace(

[] () { std::cout << “B1”; },

[] () { std::cout << “B2”; },

[] () { std::cout << “B3”; }

);

B3.succeed(B1, B2);

});

A.precede(B, C);

D.succeed(B, C);

Listing 2 shows the Taskflow code in Fig. 1. A dynamic
task accepts a reference of type tf::Subflow that is created
by the executor during the execution of task B. A subflow
inherits all graph building blocks of static tasking. By
default, a spawned subflow joins its parent task (B3 pre-
cedes its parent B implicitly), forcing a subflow to follow the
subsequent dependency constraints of its parent task.
Depending on applications, users can detach a subflow
from its parent task using the method detach, allowing its
execution to flow independently. A detached subflow will
eventually join its parent taskflow.

4.3 Composable Tasking

Composable tasking enables developers to define task hier-
archies and compose large task graphs from modular and
reusable blocks that are easier to optimize. Fig. 2 gives an
example of a Taskflow graph using composition. The top-
level taskflow defines one static task C that runs before a
dynamic task D that spawns two dependent tasks D1 and
D2. Task D precedes a module task E that composes a task-
flow of two dependent tasks A and B.

Listing 3. Taskflow code of Fig. 2.

// file 1 defines taskflow1

tf::Taskflow taskflow1;

auto [A, B] = taskflow1.emplace(

[] () { std::cout << “TaskA”; },

[] () { std::cout << “TaskB”; }

);

A.precede(B);

// file 2 defines taskflow2

tf::Taskflow taskflow2;

auto [C, D] = taskflow2.emplace(

[] () { std::cout << “TaskC”; },

[] (tf::Subflow& sf) {

std::cout << “TaskD”;

auto [D1, D2] = sf.emplace(

[] () { std::cout << “D1”; },

[] () { std::cout << “D2”; }

);

D1.precede(D2);

}

);

auto E = taskflow2.composed_of(taskflow1); //

module

D.precede(E);

C.precede(D);

Listing 3 shows the Taskflow code of Fig. 2. It declares
two taskflows, taskflow1 and taskflow2. taskflow2 forms
a module task E by calling the method composed_of from
taskflow1, which is then preceded by task D. Unlike a sub-

Fig. 1. A task graph that spawns another task graph (B1, B2, and B3)
during the execution of task B. Fig. 2. An example of taskflow composition.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1305

flow task, a module task does not own the taskflow but
maintains a soft mapping to its composed taskflow. Users
can create multiple module tasks from the same taskflow
but they must not run concurrently; on the contrary, sub-
flows are created dynamically and can run concurrently. In
practice, we use composable tasking to partition large paral-
lel programs into smaller or reusable taskflows in separate
files (e.g., taskflow1 in file 1 and taskflow2 in file 2) to
improve program modularity and testability. Subflows are
instead used for enclosing a task graph that needs stateful
data referencing via lambda capture.

4.4 Conditional Tasking

We introduce a new conditional tasking model to overcome
the limitation of existing frameworks in expressing general
control flow beyond DAG. A condition task is a callable that
returns an integer index indicating the next successor task
to execute. The index is defined with respect to the order of
the successors preceded by the condition task. Fig. 3 shows
an example of if-else control flow, and Listing 4 gives its
implementation. The code is self-explanatory. The condition
task, cond, precedes two tasks, yes and no. With this
order, if cond returns 0, the execution moves on to yes, or
no if cond returns 1.

Listing 4. Taskflow program of Fig. 3.

auto [init, cond, yes, no] = taskflow.emplace(

[] () { std::cout << “init”; },

[] () { std::cout << “cond”; return 0; },

[] () { std::cout << “cond returns 0”; },

[] () { std::cout << “cond returns 1”; }

);

cond.succeed(init)

.precede(yes, no);

Our condition task supports iterative control flow by
introducing a cycle in the graph. Fig. 4 shows a task graph of
do-while iterative control flow, implemented in Listing 5.
The loop continuation condition is implemented by a single
condition task, cond, that precedes two tasks, body and
done. When cond returns 0, the execution loops back to
body. When cond returns 1, the execution moves onto
done and stops. In this example, we use only four tasks
even though the control flow spans 100 iterations. Our
model is more efficient and expressive than existing frame-
works that count on dynamic tasking or recursive parallel-
ism to execute condition on the fly [18], [20].

Listing 5. Taskflow program of Fig. 4.

int i;

auto [init, body, cond, done] = taskflow.emplace(

[&](){ i=0; },

[&](){ i++; },

[&](){ return i<100 ? 0 : 1; },

[&](){ std::cout << “done”; }

);

init.precede(body);

body.precede(cond);

cond.precede(body, done);

Furthermore, our condition task can model non-deter-
ministic control flow where many existing models do not
support. Fig. 5 shows an example of nested non-determin-
istic control flow frequently used in stochastic optimization
(e.g., VLSI floorplan annealing [53]). The graph consists of
two regular tasks, init and stop, and three condition
tasks, F1, F2, and F3. Each condition task forms a dynamic
control flow to randomly go to either the next task or loop
back to F1 with a probability of 1/2. Starting from init,
the expected number of condition tasks to execute before
reaching stop is eight. Listing 6 implements Fig. 5 in just 11
lines of code.

Listing 6. Taskflow program of Fig. 5.

auto [init, F1, F2, F3, stop] = taskflow.emplace(

[] () { std::cout << “init”; },

[] () { return rand()%2 }

[] () { return rand()%2 }

[] () { return rand()%2 }

[] () { std::cout << “stop”; }

);

init.precede(F1);

F1.precede(F2, F1);

F2.precede(F3, F1);

F3.precede(stop, F1);

The advantage of our conditional tasking is threefold.
First, it is simple and expressive. Developers benefit from
the ability to make in-graph control-flow decisions that are
integrated within task dependencies. This type of decision
making is different from dataflow [33] as we do not abstract
data but tasks, and is more general than the primitive-based
method [56] that is limited to domain applications. Second,
condition tasks can be associated with other tasks to inte-
grate control flow into a unified graph entity. Users ought
not to partition the control flow or unroll it to a flat DAG,
but focus on expressing dependent tasks and control flow.
The later section will explain our scheduling algorithms for
condition tasks. Third, our model enables developers to effi-
ciently overlap tasks both inside and outside control flow.

Fig. 3. A Taskflow graph of if-else control flow using one condition task
(in diamond).

Fig. 4. A Taskflow graph of iterative control flow using one condition task.

Fig. 5. A Taskflow graph of non-deterministic control flow using three
condition tasks.

1306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

For example, Fig. 6 implements a task graph of three con-
trol-flow blocks, and cond_1 can run in parallel with
cond_2 and cond_3. This example requires only 30 lines
of code.

Listing 7. Taskflow program of Fig. 7.

__global__ void saxpy(int n,int a,float *x,

float *y);

const unsigned N = 1<<20;

std::vector<float> hx(N, 1.0f), hy(N, 2.0f);

float *dx{nullptr}, *dy{nullptr};

auto [allocate_x, allocate_y] = taskflow.emplace

(

[&](){ cudaMallocManaged(&dx, N*sizeof

(float));}

[&](){ cudaMallocManaged(&dy, N*sizeof

(float));}

);

auto cudaFlow = taskflow.emplace_on(

[&](tf::cudaFlow& cf) {

auto h2d_x = cf.copy(dx, hx.data(), N);

auto h2d_y = cf.copy(dy, hy.data(), N);

auto d2h_x = cf.copy(hx.data(), dx, N);

auto d2h_y = cf.copy(hy.data(), dy, N);

auto kernel = cf.kernel(

GRID, BLOCK, SHM, saxpy, N, 2.0f, dx, dy

);

kernel.succeed(h2d_x, h2d_y)

.precede(d2h_x, d2h_y);

}, 1

);

cudaFlow.succeed(allocate_x, allocate_y);

4.5 Heterogeneous Tasking

We introduce a new heterogeneous task graph program-
ming model by leveraging C++ closure and emerging GPU
task graph acceleration, CUDA Graph [4]. Fig. 7 and Listing
7 show the canonical CPU-GPU saxpy (A�X plus Y) work-
load and its implementation using our model. Our model
lets users describe a GPU workload in a task graph called
cudaFlow rather than aggregated GPU operations using
explicit CUDA streams and events. A cudaFlow lives inside
a closure and defines methods for constructing a GPU task
graph. In this example, we define two parallel CPU tasks
(allocate_x, allocate_y) to allocate unified shared
memory (cudaMallocManaged) and one cudaFlow task
to spawn a GPU task graph consisting of two host-to-device
(H2D) transfer tasks (h2d_x, h2d_y), one saxpy kernel task
(kernel), and two device-to-host (D2H) transfer tasks

(d2h_x, d2h_y), in this order of task dependencies. Task
dependencies are established through precede or suc-

ceed. Apparently, cudaFlow must run after allocate_x
and allocate_y. We emplace this cudaFlow on GPU 1
(emplace_on). When defining cudaFlows on specific
GPUs, users are responsible for ensuring all involved mem-
ory operations stay in valid GPU contexts.

Our cudaFlow has the three key motivations. First, users
focus on the graph-level expression of dependent GPU
operations without wrangling with low-level streams. They
can easily visualize the graph by Taskflow to reduce turn-
around time. Second, our closure forces users to express
their intention on what data storage mechanism should be
used for each captured variable. For example, Listing 7 cap-
tures all data (e.g., hx, dx) in reference to form a stateful clo-
sure. When allocate_x and allocate_y finish, the
cudaFlow closure can access the correct state of dx and dy.
This property is very important for heterogeneous graph
parallelism because CPU and GPU tasks need to share states
of data to collaborate with each other. Our model makes it
easy and efficient to capture data regardless of its scope.
Third, by abstracting GPU operations to a task graph clo-
sure, we judiciously hide implementation details for porta-
ble optimization. By default, a cudaFlow maps to a CUDA
graph that can be executed using a single CPU call. On a
platform that does not support CUDA Graph, we fall back
to a stream-based execution.

Listing 8. Taskflow program of Fig. 7 using a capturer.

taskflow.emplace_on([&](tf::

cudaFlowCapturer& cfc) {

auto h2d_x = cfc.copy(dx, hx.data(), N);

auto h2d_y = cfc.copy(dy, hy.data(), N);

auto d2h_x = cfc.copy(hx.data(), dx, N);

auto d2h_y = cfc.copy(hy.data(), dy, N);

auto kernel = cfc.on([&](cudaStream_t s){

invoke_3rdparty_saxpy_kernel(s);

});

kernel.succeed(h2d_x, h2d_y)

.precede(d2h_x, d2h_y);

}, 1);

Taskflow does not dynamically choose whether to exe-
cute tasks on CPU or GPU, and does not manage GPU data
with another abstraction. This is a software decision we
have made when designing cudaFlow based on our experi-
ence in parallelizing CAD using existing TGCSs. While it is
always interesting to see what abstraction is best suited for
which application, in our field, developing high-perfor-
mance CAD algorithms requires many custom efforts on
optimizing the memory and data layouts [26], [28]. Devel-
opers tend to do this statically in their own hands, such as
direct control over raw pointers and explicit memory place-
ment on a GPU, while leaving tedious details of runtime

Fig. 6. A Taskflow graph of parallel control-flow blocks using three condi-
tion tasks.

Fig. 7. A saxpy (“single-precision A�X plus Y”) task graph using two CPU
tasks and one cudaFlow task.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1307

load balancing to a dynamic scheduler. After years of
research, we have concluded to not abstract memory or
data because they are application-dependent. This decision
allows Taskflow to be framework-neutral while enabling
application code to take full advantage of native or low-
level GPU programming toolkits.

Constructing a GPU task graph using cudaFlow requires
all kernel parameters are known in advance. However,
third-party applications, such as cuDNN and cuBLAS, do
not open these details but provide an API for users to
invoke hidden kernels through custom streams. The burden
is on users to decide a stream layout and witness its concur-
rency across dependent GPU tasks. To deal with this prob-
lem, we design a cudaFlow capturer to capture GPU tasks
from existing stream-based APIs. Listing 8 outlines an
implementation of the same saxpy task graph in Fig. 7 using
a cudaFlow capturer, assuming the saxpy kernel is only
invocable through a stream-based API.

Both cudaFlow and cudaFlow capturer can work seam-
lessly with condition tasks. Control-flow decisions fre-
quently happen at the boundary between CPU and GPU
tasks. For example, a heterogeneous k-means algorithm iter-
atively uses GPU to accelerate the finding of k centroids and
then uses CPU to check if the newly found centroids con-
verge to application rules. Taskflow enables an end-to-end
expression of such a workload in a single graph entity, as
shown in Fig. 8 and Listing 9. This capability largely
improves the efficiency of modeling complex CPU-GPU
workloads, and our scheduler can dynamically overlap
CPU and GPU tasks across different control-flow blocks.

Listing 9. Taskflow program of Fig. 8.

auto [h2d, update, cond, d2h] = taskflow.emplace(

[&](tf::cudaFlow& cf){ /* copy input to GPU */ },

[&](tf::cudaFlow& cf){ /* update kernel */ },

[&](){ return converged() ? 1 : 0; },

[&](tf::cudaFlow& cf){ /* copy result to CPU */ }

);

h2d.precede(update);

update.precede(cond);

cond.precede(update, d2h);

5 TASKFLOW SYSTEM RUNTIME

Taskflow enables users to express CPU-GPU dependent
tasks that integrate control flow into an HTDG. To support
our model with high performance, we design the system
runtime at two scheduling levels, task level and worker level.
The goal of task-level scheduling is to (1) devise a feasible,
efficient execution for in-graph control flow and (2) trans-
form each GPU task into a runnable instance on a GPU. The
goal of worker-level scheduling is to optimize the execution
performance by dynamically balancing the worker count
with task parallelism.

5.1 Task-level Scheduling Algorithm

5.1.1 Scheduling Condition Tasks

Conditional tasking is powerful but challenging to sched-
ule. Specifically, we must deal with conditional dependency
and cyclic execution without encountering task race, i.e.,
only one thread can touch a task at a time. More impor-
tantly, we need to let users easily understand our task
scheduling flow such that they can infer if a written task
graph is properly conditioned and schedulable. To accom-
modate these challenges, we separate the execution logic
between condition tasks and other tasks using two depen-
dency notations, weak dependency (out of condition tasks)
and strong dependency (other else). For example, the six
dashed arrows in Fig. 5 are weak dependencies and the
solid arrow init!F1 is a strong dependency. Based on
these notations, we design a simple and efficient algorithm
for scheduling tasks, as depicted in Fig. 9. When the sched-
uler receives an HTDG, it (1) starts with tasks of zero depen-
dencies (both strong and weak) and continues executing
tasks whenever strong remaining dependencies are met, or
(2) skips this rule for weak dependency and directly jumps
to the task indexed by the return of that condition task.

Taking Fig. 5 for example, the scheduler starts with init

(zero weak and strong dependencies) and proceeds to F1.
Assuming F1 returns 0, the scheduler proceeds to its first
successor, F2. Now, assuming F2 returns 1, the scheduler
proceeds to its second successor, F1, which forms a cyclic
execution and so forth. With this concept, the scheduler will
cease at stop when F1, F2, and F3 all return 0. Based on
this scheduling algorithm, users can quickly infer whether
their task graph defines correct control flow. For instance,
adding a strong dependency from init to F2 may cause
task race on F2, due to two execution paths, init!F2 and
init!F1!F2.

Fig. 10 shows two common pitfalls of conditional tasking,
based on our task-level scheduling logic. The first example
has no source for the scheduler to start with. A simple fix is
to add a task S of zero dependencies. The second example
may race on D, if C returns 0 at the same time E finishes. A
fix is to partition the control flow at C and D with an auxil-
iary node X such that D is strongly conditioned by E and X.

5.1.2 Scheduling GPU Tasks

We leverage modern CUDA Graph [4] to schedule GPU
tasks. CUDA graph is a new asynchronous task graph pro-
gramming model introduced in CUDA 10 to enable more

Fig. 8. A cyclic task graph using three cudaFlow tasks and one condition
task to model an iterative k-means algorithm.

Fig. 9. Flowchart of our task scheduling.

1308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

efficient launch and execution of GPU work than streams.
There are two types of GPU tasks, cudaFlow and cudaFlow
capturer. For each scheduled cudaFlow task, since we know
all the operation parameters, we construct a CUDA graph
that maps each task in the cudaFlow, such as copy and ker-
nel, and each dependency to a node and an edge in the
CUDA graph. Then, we submit it to the CUDA runtime for
execution. This organization is simple and efficient, espe-
cially under modern GPU architectures (e.g., Nvidia
Ampere) that support hardware-level acceleration for graph
parallelism.

Algorithm 1.make_graph(G)

Input: a cudaFlow capturer C
Output: a transformed CUDA graph G

1: S get_capture_mode_streams(max streams);
2: L levelize(C);
3: l L:min level;
4: while l <¼ L:max level do
5: foreach t 2 L.get_tasks(l) do
6: s ðt:idmodmax streamsÞ;
7: foreach p 2 t:predecessors do
8: if s 6¼ ðp:idmodmax streamsÞ then
9: stream_wait_event(S½s�, p:event);
10: end
11: end
12: stream_capture(t, S½s�);
13: foreach n 2 t:successors do
14: if s 6¼ ðn:idmodmax streamsÞ then
15: stream_record_event(S½s�, p:event);
16: end
17: end
18: end
19: end
20: G end_capture_mode_streams(S);
21: return G;

On the other hand, for each scheduled cudaFlow cap-
turer task, our runtime transforms the captured GPU tasks
and dependencies into a CUDA graph using stream cap-
ture [4]. The objective is to decide a stream layout optimized
for kernel concurrency without breaking task dependencies.
We design a greedy round-robin algorithm to transform a
cudaFlow capturer to a CUDA graph, as shown in Algo-
rithm 1. Our algorithm starts by levelizing the capturer
graph into a two-level array of tasks in their topological
orders. Tasks at the same level can run simultaneously.
However, assigning each independent task here a unique

stream does not produce decent performance, because GPU
has a limit on the maximum kernel concurrency (e.g., 32 for
RTX 2080). We give this constraint to users as a tunable
parameter, max streams. We assign each levelized task an
id equal to its index in the array at its level. Then, we can
quickly assign each task a stream using the round-robin
arithmetic (line 6). Since tasks at different levels have
dependencies, we need to record an event (lines 13:17) and
wait on the event (lines 7:11) from both sides of a depen-
dency, saved for those issued in the same stream (line 8 and
line 14).

Fig. 11 gives an example of transforming a user-given
cudaFlow capturer graph into a native CUDA graph using
two streams (i.e., max stream ¼ 2) for execution. The algo-
rithm first levelizes the graph by performing a topological
traversal and assign each node an id equal to its index at the
level. For example, A and B are assigned 0 and 1, C, D, and E

are assigned 0, 1, and 2, and so on. These ids are used to
quickly determine the mapping between a stream and a
node in our round-robin loop, because CUDA stream only
allows inserting events from the latest node in the queue.
For instance, when A and B are assigned to stream 0 (upper
row) and stream 1 (lower row) during the level-by-level tra-
versal (line 4 of Algorithm 1), we can determine ahead of
the stream numbers of their successors and find out the two
cross-stream dependencies, A!D and B!E, that need
recording events. Similarly, we can wait on recorded events
by scanning the predecessors of each node to find out cross-
stream event dependencies.

5.2 Worker-level Scheduling Algorithm

At the worker level, we leverage work stealing to execute
submitted tasks with dynamic load balancing. Work steal-
ing has been extensively studied in multicore program-
ming [2], [12], [13], [16], [23], [39], [40], [47], [52], but an
efficient counterpart for hybrid CPU-GPU or more general
heterogeneous systems remains demanding. This is a chal-
lenging research topic, especially under Taskflow’s HTDG
model. When executing an HTDG, a CPU task can submit
both CPU and GPU tasks and vice versa whenever depen-
dencies are met. The available task parallelism changes
dynamically, and there are no ways to predict the next com-
ing tasks under dynamic control flow. To achieve good sys-
tem performance, the scheduler must balance the number
of worker threads with dynamically generated tasks to con-
trol the number of wasteful steals because the wasted resour-
ces should have been used by useful workers or other
concurrent programs [13], [23].

Fig. 10. Common pitfalls of conditional tasking.

Fig. 11. Illustration of Algorithm 1 on transforming an application cuda-
Flow capturer graph into a native CUDA graph using two streams.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1309

Keeping workers busy in awaiting tasks with a yielding
mechanism is a commonly used work-stealing frame-
work [16], [17], [25]. However, this approach is not cost-effi-
cient, because it can easily over-subscribe resources when
tasks become scarce, especially around the decision-making
points of control flow. The sleep-based mechanism is
another way to suspend the workers frequently failing in
steal attempts. A worker is put into sleep by waiting for a
condition variable to become true. When the worker sleeps,
OS can grant resources to other workers for running useful
jobs. Also, reducing wasteful steals can improve both the
inter-operability of a concurrent program and the overall
system performance, including latency, throughput, and
energy efficiency to a large extent [23]. Nevertheless, decid-
ing when and how to put workers to sleep, wake up workers to
run, and balance the numbers of workers with dynamic task paral-
lelism is notoriously challenging to design correctly and
implement efficiently.

Our previous work [42] has introduced an adaptive
work-stealing algorithm to address a similar line of the chal-
lenge yet in a CPU-only environment by maintaining a loop
invariant between active and idle workers. However,
extending this algorithm to a heterogeneous target is not
easy, because we need to consider the adaptiveness in dif-
ferent heterogeneous domains and bound the total number
of wasteful steals across all domains at any time of the exe-
cution. To overcome this challenge, we introduce a new
scheduler architecture and an adaptive worker manage-
ment algorithm that are both generalizable to arbitrary het-
erogeneous domains. We shall prove the proposed work-
stealing algorithm can deliver a strong upper bound on the
number of wasteful steals at any time during the execution.

5.2.1 Heterogeneous Work-Stealing Architecture

At the architecture level, our scheduler maintains a set of
workers for each task domain (e.g., CPU, GPU). A worker
can only steal tasks of the same domain from others. Fig. 12
shows the architecture of our work-stealing scheduler on
two domains, CPU and GPU. By default, the number of
domain workers equals the number of domain devices (e.g.,
CPU cores, GPUs). We associate each worker with two sepa-
rate task queues, a CPU task queue (CTQ) and a GPU task
queue (GTQ), and declare a pair of CTQ and GTQ shared

by all workers. The shared CTQ and GTQ pertain to the
scheduler and are primarily used for external threads to
submit HTDGs. A CPU worker can push and pop a new
task into and from its local CTQ, and can steal tasks from all
the other CTQs; the structure is symmetric to GPU workers.
This separation allows a worker to quickly insert dynami-
cally generated tasks to their corresponding queues without
contending with other workers.

Algorithm 2.worker_loop(w)

Input: w: a worker
Per-worker global: t: a task (initialized toNIL)

1: while true do
2: exploit_task(w, t);
3: if wait_for_task(w, t) == false then
4: break;
5: end
6: end

Algorithm 3. exploit_task(w, t)

Input: w: a worker (domain dw)
Per-worker global: t: a task

1: if t 6¼NIL then
2: if AtomInc(actives[dw]) == 1 and thieves[dw] == 0 then
3: notifier½dw�.notify_one();
4: end
5: do
6: execute_task(w, t);
7: t w:task queue½dw�.pop();
8: while t 6¼NIL;
9: AtomDec(actives½dw�);
10: end

We leverage two existing concurrent data structures,
work-stealing queue and event notifier, to support our schedul-
ing architecture. We implemented the task queue based on
the lock-free algorithm proposed by [36]. Only the queue
owner can pop/push a task from/into one end of the queue,
while multiple threads can steal a task from the other end at
the same time. Event notifier is a two-phase commit proto-
col (2PC) that allows a worker to wait on a binary predicate
in a non-blocking fashion [11]. The idea is similar to the 2PC
in distributed systems and computer networking. The wait-
ing worker first checks the predicate and calls prepare_-

wait if it evaluates to false. The waiting worker then checks
the predicate again and calls commit_wait to wait, if the
outcome remains false, or cancel_wait to cancel the
request. Reversely, the notifying worker changes the predi-
cate to true and call notify_one or notify_all to wake
up one or all waiting workers. Event notifier is particularly
useful for our scheduler architecture because we can keep
notification between workers non-blocking. We develop
one event notifier for each domain, based on Dekker’s algo-
rithm by [11].

5.2.2 Heterogeneous Work-Stealing Algorithm

Atop this architecture, we devise an efficient algorithm to
adapt the number of active workers to dynamically gener-
ated tasks such that threads are not underutilized when

Fig. 12. Architecture of our work-stealing scheduler on two domains,
CPU and GPU.

1310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

tasks are abundant nor overly subscribed when tasks are
scarce. Our adaptiveness is different from existing frame-
works, such as constant wake-ups [2], [23], data locality [21],
[49], and watchdogs [23]. Instead, we extend our previous
work [42] to keep a per-domain invariant to control the num-
bers of thieves and, consequently, wasteful steals based on
the active worker count: When an active worker exists, we keep
at least one worker making steal attempts unless all workers are
active.

Unlike the CPU-only scheduling environment in [42], the
challenge to keep this invariant in a heterogeneous target
comes from the heterogeneously dependent tasks and
cross-domain worker notifications, as a CPU task can spawn
a GPU task and vice versa. Our scheduler architecture is
particularly designed to tackle this challenge by separating
decision controls to a per-domain basis. This design allows
us to realize the invariant via an adaptive strategy–the last
thief to become active will wake up a worker in the same domain
to take over its thief role, and so forth. External threads (non-
workers) submit tasks through the shared task queues and
wake up workers to run tasks.

Algorithm 4. execute_task(w, t)

Input: w: a worker
Per-worker global: t: a task

1: r invoke_task_callable(t);
2: if r.has_value() then
3: submit_task(w, t:successors½r�);
4: return;
5: end
6: foreach s 2 t.successors do
7: if AtomDec(s.strong_dependents) == 0 then
8: submit_task(w, s);
9: end
10: end

Our scheduling algorithm is symmetric by domain.
Upon spawned, each worker enters the loop in Algorithm 2.
Each worker has a per-worker global pointer t to a task that
is either stolen from others or popped out from the worker’s
local task queue after initialization; the notation will be
used in the rest of algorithms. The loop iterates two func-
tions, exploit_task and wait_for_task. Algorithm 3
implements the function exploit_task. We use two
scheduler-level arrays of atomic variables, actives and
thieves, to record for each domain the number of workers
that are actively running tasks and the number of workers
that are making steal attempts, respectively.1 Our algorithm
relies on these atomic variables to decide when to put a
worker to sleep for reducing resource waste and when to
bring back a worker for running new tasks. Lines 2:4 imple-
ment our adaptive strategy using two lightweight atomic
operations. In our pseudocodes, the two atomic operations,
AtomInc and AtomDec, return the results after incrementing
and decrementing the values by one, respectively. Notice
that the order of these two comparisons matters (i.e., active
workers and then thieves), as they are used to synchronize

with other workers in the later algorithms. Lines 5:8 drain
out the local task queue and executes all the tasks using
execute_task in Algorithm 4. Before leaving the func-
tion, the worker decrements actives by one (line 9).

Algorithm 5. submit_task(w, t)

Input: w: a worker (domain dw)
Per-worker global: t: a task (domain dt)

1: w:task queue½dt�.push(t);
2: if dw! ¼ dt then
3: if actives[dt] == 0 and thieves[dt] == 0 then
4: notifier½dt�.notify_one();
5: end
6: end

Algorithm 4 implements the function execute_task. We
invoke the callable of the task (line 1). If the task returns a
value (i.e., a condition task), we directly submit the task of the
indexed successor (lines 2:5). Otherwise, we remove the task
dependency from all immediate successors and submit new
tasks of zero remaining strong dependencies (lines 6:10). The
detail of submitting a task is shown in Algorithm 5. The
worker inserts the task into the queue of the corresponding
domain (line 1). If the task does not belong to the worker’s
domain (line 2), the worker wakes up one worker from that
domain if there are no active workers or thieves (lines 3:5).
The function submit_task is internal to the workers of a
scheduler. External threads never touch this call.

When a worker completes all tasks in its local queue, it
proceeds to wait_for_task (line 3 in Algorithm 2), as
shown in Algorithm 6. At first, the worker enters explor-
e_task to make steal attempts (line 2). When the worker
steals a task and it is the last thief, it notifies a worker of the
same domain to take over its thief role and returns to an
active worker (lines 3:8). Otherwise, the worker becomes a
sleep candidate. However, we must avoid underutilized par-
allelism, since new tasks may come at the time we put a
worker to sleep. We use 2PC to adapt the number of active
workers to available task parallelism (lines 9:41). The predi-
cate of our 2PC is at least one task queue, both local and shared,
in the worker’s domain is nonempty. At line 8, the worker has
drained out its local queue and devoted much effort to steal-
ing tasks. Other task queues in the same domain are most
likely to be empty. We put this worker to a sleep candidate
by submitting a wait request (line 9). From now on, all the
notifications from other workers will be visible to at least one
worker, including this worker. That is, if another worker call
notify at this moment, the 2PC guarantees one worker
within the scope of lines 9:41 will be notified (i.e., line 42).
Then, we inspect our predicate by examining the shared
task queue again (lines 10:20), since external threads might
have inserted tasks at the same time we call prepare_-
wait. If the shared queue is nonempty (line 10), the worker
cancels the wait request and makes an immediate steal
attempt at the queue (lines 11:12); if the steal succeeds and it
is the last thief, the worker goes active and notifies a worker
(lines 13:18), or otherwise enters the steal loop again (line
19). If the shared queue is empty (line 20), the worker checks
whether the scheduler received a stop signal from the exec-
utor due to exception or task cancellation, and notifies all
workers to leave (lines 21:28). Now, the worker is almost

1. While our pseudocodes use array notations of atomic variables for
the sake of brevity, the actual implementation considers padding to
avoid false-sharing effects.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1311

ready to sleep except if it is the last thief and: (1) an active
worker in its domain exists (lines 30:33) or (2) at least one
task queue of the same domain from other workers is non-
empty (lines 34:39). The two conditions may happen
because a task can spawn tasks of different domains and
trigger the scheduler to notify the corresponding domain
workers. Our 2PC guarantees the two conditions synchro-
nize with lines 2:4 in Algorithm 3 and lines 3:5 in Algorithm
5, and vice versa, preventing the problem of undetected
task parallelism. Passing all the above conditions, the
worker commits to wait on our predicate (line 41).

Algorithm 6.wait_for_task(w, t)

Input: w: a worker (domain dw)
Per-worker global: t: a task
Output: a boolean signal of stop

1: AtomInc(thieves½dw�);
2: explore_task(w; t);
3: if t 6¼NIL then
4: if AtomDec(thieves[dw]) == 0 then
5: notifier½dw�.notify_one();
6: end
7: return true;
8: end
9: notifier½dw�.prepare_wait(w);
10: if task_queue[dw].empty() 6¼ true then
11: notifier½dw�.cancel_wait(w);
12: t task queue½dw�.steal();
13: if t 6¼ NIL then
14: if AtomDec(thieves½dw�) == 0 then
15: notifier½dw�.notify_one();
16: end
17: return true;
18: end
19: goto Line 2;
20: end
21: if stop == true then
22: notifier½dw�.cancel_wait(w);
23: foreach domain d 2 D do
24: notifier½d�.notify_all();
25: end
26: AtomDec(thieves½dw�);
27: return false;
28: end
29: if AtomDec(thieves[dw]) == 0 then
30: if actives½dw� > 0 then
31: notifier½dw�.cancel_wait(w);
32: goto Line 1;
33: end
34: foreach worker x 2W do
35: if x.task_queue[dw].empty() 6¼ true then
36: notifier½dw�.cancel_wait(w);
37: goto Line 1;
38: end
39: end
40: end
41: notifier½dw�.commit_wait(w);
42: return true;

Algorithm 7 implements explore_task, which resem-
bles the normal work-stealing loop [16]. At each iteration,
the worker (thief) tries to steal a task from a randomly

selected victim, including the shared task queue, in the
same domain. We use a parameter MAX STEALS to con-
trol the number of iterations. In our experiments, setting
MAX STEAL to ten times the number of all workers is suf-
ficient enough for most applications. Up to this time, we
have discussed the core work-stealing algorithm. To submit
an HTDG for execution, we call submit_graph, shown in
Algorithm 8. The caller thread inserts all tasks of zero
dependencies (both strong and weak dependencies) to the
shared task queues and notifies a worker of the correspond-
ing domain (lines 4:5). Shared task queues may be accessed
by multiple callers and are thus protected under a lock per-
taining to the scheduler. Our 2PC guarantees lines 4:5 syn-
chronizes with lines 10:20 of Algorithm 6 and vice versa,
preventing undetected parallelism in which all workers are
sleeping.

Algorithm 7. explore_task(w, t)

Input: w: a worker (a thief in domain dw)
Per-worker global:t: a task (initialized toNIL)

1: steals 0;
2: while t !=NIL and++steals �MAX STEAL do
3: yield();
4: t steal_task_from_random_victim(dw);
5: end

Algorithm 8. submit_graph(g)

Input: g: an HTDG to execute
1: foreach t 2 g.source_tasks do
2: scoped_lock lockðqueue mutex);
3: dt t:domain;
4: task queue½dt�.push(t);
5: notifier½dt�.notify_one();
6: end

6 ANALYSIS

To justify the efficiency of our scheduling algorithm, we
draw the following theorems and give their proof sketches.

Lemma 1. For each domain, when an active worker (i.e., running
a task) exists, at least one another worker is making steal
attempts unless all workers are active.

Proof. We prove Lemma 1 by contradiction. Assuming
there are no workers making steal attempts when an
active worker exists, this means an active worker (line 2
in Algorithm 3) fails to notify one worker if no thieves
exist. There are only two scenarios for this to happen: (1)
all workers are active; (2) a non-active worker misses the
notification before entering the 2PC guard (line 9 in Algo-
rithm 6). The first scenario is not possible as it has been
excluded by the lemma. If the second scenario is true, the
non-active worker must not be the last thief (contradic-
tion) or it will notify another worker through line 3 in
Algorithm 6. The proof holds for other domains as our
scheduler design is symmetric. tu

Theorem 1. Our work-stealing algorithm can correctly complete
the execution of an HTDG.

1312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Proof. There are two places where a new task is submitted,
line 4 in Algorithm 8 and line 1 in Algorithm 5. In the first
place, where a task is pushed to the shared task queue by
an external thread, the notification (line 5 in Algorithm 8)
is visible to a worker in the same domain of the task for
two situations: (1) if a worker has prepared or committed
to wait (lines 9:41 in Algorithm 6), it will be notified; (2)
otherwise, at least one worker will eventually go through
lines 9:20 in Algorithm 6 to steal the task. In the second
place, where the task is pushed to the corresponding local
task queue of that worker, at least one worker will execute
it in either situation: (1) if the task is in the same domain of
the worker, the work itself may execute the task in the sub-
sequent exploit_task, or a thief steals the task through
explore_task; (2) if the worker has a different domain
from the task (line 2 in Algorithm 5), the correctness can be
proved by contradiction. Assuming this task is unde-
tected, whichmeans either the worker did not notify a cor-
responding domain worker to run the task (false at the
condition of line 3 in Algorithm 5) or notified one worker
(line 4 in Algorithm 5) but none have come back. In the for-
mer case, we know at least one worker is active or stealing,
which will eventually go through line 29:40 of Algorithm 6
to steal this task. Similarly, the latter case is not possible
under our 2PC, as it contradicts the guarding scan in lines
9:41 of Algorithm 6. tu

Theorem 2. Our work-stealing algorithm does not under-sub-
scribe thread resources during the execution of an HTDG.

Proof. Theorem 2 is a byproduct of Lemma 1 and Theorem
1. Theorem 1 proves that our scheduler never has task
leak (i.e., undetected task parallelism). During the execu-
tion of an HTDG, whenever the number of tasks is larger
than the present number of workers, Lemma 1 guarantees
one worker is making steal attempts, unless all workers
are active. The 2PC guard (lines 34:39 in Algorithm 6)
ensures that worker will successfully steal a task and
become an active worker (unless no more tasks), which in
turn wakes up another worker if that worker is the last
thief. As a consequence, the number of workers will catch
up on the number of tasks one after one to avoid under-
subscribed thread resources. tu

Theorem 3. At any moment during the execution of an HTDG,
the number of wasteful steals is bounded by OðMAX
STEALS � ðjW j þ jDj � ðE=esÞÞÞ, where W is the worker
set, D is the domain set, E is the maximum execution time of
any task, and es is the execution time of Algorithm 7.

Proof. We give a direct proof for Theorem 3 using the fol-
lowing notations: D denotes the domain set, d denotes a
domain (e.g., CPU, GPU), W denotes the entire worker
set, Wd denotes the worker set in domain d, wd denotes a
worker in domain d (i.e., wd 2Wd), es denotes the time to
complete one round of steal attempts (i.e., Algorithm 7),
ed denotes the maximum execution time of any task in
domain d, and E denotes the maximum execution time of
any task in the given HTDG.

At any time point, the worst case happens at the fol-
lowing scenario: for each domain d only one worker wd is
actively running one task while all the other workers are

making unsuccessful steal attempts. Due to Lemma 1 and
lines 29:40 in Algorithm 6, only one thief w0d will eventu-
ally remain in the loop, and the other jWdj � 2 thieves
will go sleep after one round of unsuccessful steal
attempts (line 2 in Algorithm 6) which ends up with
MAX STEALS � ðjWdj � 2Þ wasteful steals. For the only
one thief w0d, it keeps failing in steal attempts until the
task running by the only active worker wd finishes, and
then both go sleep. This results in another MAX
STEALS � ðed=esÞ þMAX STEALS wasteful steals; the
second terms comes from the active worker because it
needs another round of steal attempts (line 2 in Algo-
rithm 6) before going to sleep. Consequently, the number
of wasteful steals across all domains is bounded as fol-
lows:

X

d2D
MAX STEALS � ðjWdj � 2þ ðed=esÞ þ 1Þ

�MAX STEALS �
X

d2D
ðjWdj þ ed=esÞ

�MAX STEALS �
X

d2D
ðjWdj þE=esÞ

¼ OðMAX STEALS � ðjW j þ jDj � ðE=esÞÞÞ: (1)

We do not derive the bound over the execution of an
HTDG but the worst-case number of wasteful steals at
any time point, because the presence of control flow can
lead to non-deterministic execution time that requires a
further assumption of task distribution. tu

7 EXPERIMENTAL RESULTS

We evaluate the performance of Taskflow on two fronts:
micro-benchmarks and two realistic workloads, VLSI incre-
mental timing analysis and machine learning. We use
micro-benchmarks to analyze the tasking performance of
Taskflow without much bias of application algorithms. We
will show that the performance benefits of Taskflow
observed in micro-benchmarks become significant in real
workloads. We will study the performance across runtime,
energy efficiency, and throughput. All experiments ran on a
Ubuntu Linux 5.0.0-21-generic x86 64-bit machine with 40
Intel Xeon CPU cores at 2.00 GHz, 4 GeForce RTX 2080
GPUs, and 256 GB RAM. We compiled all programs using
Nvidia CUDA v11 on a host compiler of clang++ v10 with C
++17 standard -std=c++17 and optimization flag -O2

enabled. We do not observe significant difference between
-O2 and -O3 in our experiments. Each run of N CPU cores
and M GPUs corresponds to N CPU and M GPU worker
threads. All data is an average of 20 runs.

7.1 Baseline

Give a large number of TGCSs, it is impossible to compare
Taskflow with all of them. Each of the existing systems has
its pros and cons and dominates certain applications. We
consider oneTBB [2], StarPU [17], HPX [33], and OpenMP [7]
each representing a particular paradigm that has gained
some successful user experiences in CAD due to

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1313

performance [44]. oneTBB (2021.1 release) is an industrial-
strength parallel programming system under Intel
oneAPI [2]. We consider its FlowGraph library and encap-
sulate each GPU task in a CPU function. At the time of this
writing, FlowGraph does not have dedicated work stealing
for HTDGs. StarPU (version 1.3) is a CPU-GPU task pro-
gramming system widely used in the scientific computing
community [17]. It provides a C-based syntax for writing
HTDGs on top of a work-stealing runtime highly optimized
for CPUs and GPUs. HPX (version 1.4) is a C++ standard
library for concurrency and parallelism [33]. It supports
implicit task graph programming through aggregating
future objects in a dataflow API. OpenMP (version 4.5 in
clang toolchains) is a directive-based programming frame-
work for handling loop parallelism [7]. It supports static
graph encoding using task dependency clauses.

To measure the expressiveness and programmability of
Taskflow, we hire five PhD-level C++ programmers outside
our research group to implement our experiments. We edu-
cate them the essential knowledge about Taskflow and base-
line TGCSs and provide them all algorithm blocks such that
they can focus on programming HTDGs. For each imple-
mentation, we record the lines of code (LOC), the number
of tokens, cyclomatic complexity (measured by [8]), time to
finish, and the percentage of time spent on debugging. We
average these quantities over five programmers until they
obtain the correct result. This measurement may be subjec-
tive but it highlights the programming productivity and
turnaround time of each TGCSs from a real user’s
perspective.

7.2 Micro-benchmarks

We randomly generate a set of DAGs (i.e., HTDGs) with
equal distribution of CPU and GPU tasks. Each task per-
forms a SAXPY operation over 1K elements. For fair pur-
pose, we implemented CUDA Graph [4] for all baselines;
each GPU task is a CUDA graph of three GPU operations,
H2D copy, kernel, and H2D copy, in this order of depen-
dencies. Table 1 summarizes the programming effort of
each method. Taskflow requires the least amount of lines of
code (LOC) and written tokens. The cyclomatic complexity
of Taskflow measured at a single function and across the
whole program is also the smallest. The development time
of Taskflow-based implementation is much more produc-
tive than the others. For this simple graph, Taskflow and
oneTBB are very easy for our programmers to implement,
whereas we found they spent a large amount of time on

debugging task graph parallelism with StarPU, HPX, and
OpenMP.

Next, we study the overhead of task graph parallelism
among Taskflow, oneTBB, and StarPU. As shown in Table 2,
the static size of a task, compiled on our platform, is 272,
136, and 1472 bytes for Taskflow, oneTBB, and StarPU,
respectively. We do not report the data of HPX and
OpenMP because they do not support explicit task graph
construction at the functional level. The time it takes for
Taskflow to create a task and add a dependency is also
faster than oneTBB and StarPU. We amortize the time across
1M operations because all systems support pooled memory
to recycle tasks. We found StarPU has significant overhead
in creating HTDGs. The overhead always occupies 5-10% of
the total execution time regardless of the HTDG size.

Fig. 13 shows the overall performance comparison
between Taskflow and the baseline at different HTDG sizes.
In terms of runtime (top left of Fig. 13), Taskflow outper-
forms others across most data points. We complete the larg-
est HTDG by 1.37�, 1.44�, 1,53�, and 1.40� faster than
oneTBB, StarPU, HPX, and OpenMP, respectively. The
memory footprint (top right of Fig. 13) of Taskflow is close
to oneTBB and OpenMP. HPX has higher memory because
it relies on aggregated futures to describe task dependencies
at the cost of shared states. Likewise, StarPU does not offer a
closure-based interface and thus requires a flat layout (i.e.,
codelet) to describe tasks. We use the Linux perf tool to

TABLE 1
Programming Effort on Micro-benchmark

Method LOC #Tokens CC WCC Dev Bug

Taskflow 69 650 6 8 14 1%
oneTBB 182 1854 8 15 25 6%
StarPU 253 2216 8 21 47 19%
HPX 255 2264 10 24 41 33%
OpenMP 182 1896 13 19 57 49%

CC: maximum cyclomatic complexity in a single function.
WCC: weighted cyclomatic complexity of the program.
Dev: minutes to complete the implementation.
Bug: time spent on debugging as opposed to coding task graphs.

TABLE 2
Overhead of Task Graph Creation

Method Stask Ttask Tedge r< 10 r< 5 r< 1

Taskflow 272 61 ns 14 ns 550 2550 35050
oneTBB 136 99 ns 54 ns 1225 2750 40050
StarPU 1472 259 ns 384 ns 7550 - -

Stask: static size per task in bytes.
Ttask=Tedge: amortized time to create a task/dependency.
rv: graph size where its creation overhead is below v%.

Fig. 13. Overall system performance at different problem sizes using 40
CPUs and 4 GPUs.

1314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

measure the power consumption of all cores plus LLC [3].
The total joules (bottom left of Fig. 13) consumed by
Taskflow is consistently smaller than the others, due to our
adaptive worker management. In terms of power (bottom
right of Fig. 13), Taskflow, oneTBB, and OpenMP are more
power-efficient than HPX and StarPU. The difference
between Taskflow and StarPU continues to increase as we
enlarge the HTDG size.

Fig. 14 displays the runtime distribution of each method
over a hundred runs of two HTDGs, 5K and 20K tasks. The
boxplot shows that the runtime of Taskflow is more consis-
tent than others and has the smallest variation. We attribute
this result to the design of our scheduler, which effectively
separates task execution into CPU and GPU workers and
dynamically balances cross-domain wasteful steals with
task parallelism.

Finally, we compare the throughput of each method on
corunning HTDGs. This experiment emulates a server-
like environment where multiple programs run simulta-
neously on the same machine to compete for the same
resources. The effect of worker management propagates
to all parallel processes. We consider up to nine corun
processes each executing the same HTDG of 20K tasks.
We use the weighted speedup [23] to measure the system
throughput. Fig. 15 compares the throughput of each
method and relates the result to the CPU utilization. Both
Taskflow and oneTBB produce significantly higher
throughput than others. Our throughput is slightly better
than oneTBB by 1–15% except for seven coruns. The result
can be interpreted by the CPU utilization plot, reported
by perf stat. We can see both Taskflow and oneTBB
make effective use of CPU resources to schedule tasks.
However, StarPU keeps workers busy most of the time
and has no mechanism to dynamically control thread
resources with task parallelism.

Since both oneTBB and StarPU provides explicit task
graph programming models and work-stealing for dynamic
load balancing, we will focus on comparing Taskflow with
oneTBB and StarPU for the next two real workloads.

7.3 VLSI Incremental Timing Analysis

As part of our DARPA project, we applied Taskflow to solve
a VLSI incremental static timing analysis (STA) problem in
an optimization loop. The goal is to optimize the timing
landscape of a circuit design by iteratively applying design
transforms (e.g., gate sizing, buffer insertion) and evaluating
the timing improvement until all data paths are passing,
aka timing closure. Achieving timing closure is one of the
most time-consuming steps in the VLSI design closure flow
process because optimization algorithms can call a timer
millions or even billions of times to incrementally analyze
the timing improvement of a design transform. We consider
the GPU-accelerated critical path analysis algorithm [26]
and run it across one thousand incremental iterations based
on the design transforms given by TAU 2015 Contest [29].
The data is generated by an industrial tool to evaluate the
performance of an incremental timing algorithm. Each
incremental iteration corresponds to at least one design
modifier followed by a timing report operation to trigger
incremental timing update of the timer.

Fig. 16 shows a partial Taskflow graph of our implemen-
tation. One condition task forms a loop to implement itera-
tive timing updates and the other three condition tasks
branch the execution to either CPU-based timing update
(over 10K tasks) or GPU-based timing update (cudaFlow
tasks). The motivation here is to adapt the timing update to
different incrementalities. For example, if a design trans-
form introduces only a few hundreds of nodes to update,

Fig. 14. Runtime distribution of two task graphs.

Fig. 15. Throughput of corunning task graphs and CPU utilization at dif-
ferent problem sizes under 40 CPUs and 4 GPUs.

Fig. 16. A partial HTDG of 1 cudaFlow task (purple box), 4 condition
tasks (green diamond), and 8 static tasks (other else) for one iteration of
timing-driven optimization.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1315

there is no need to offload the computation to GPUs due to
insufficient amount of data parallelism. The cudaFlow task
composes over 1K operations to compute large interconnect
delays, which often involves several gigabytes of parasitic
data. Since oneTBB FlowGraph and StarPU do not support
control flow, we unroll their task graphs across fixed-length
iterations found in hindsight to avoid expensive synchroni-
zation at each iteration; the number of concatenated graphs
is equal to the number of iterations.

Table 3 compares the programming effort between Task-
flow, oneTBB, and StarPU. In a rough view, the implemen-
tation complexity using Taskflow is much less than that of
oneTBB and StarPU. The amount of time spent on imple-
menting the algorithm is about 3.9 hours for Taskflow, 6.1
hours for oneTBB, and 4.3 hours for StarPU. It takes 3–4�
more time to debug oneTBB and StarPU than Taskflow,
mostly on control flow. Interestingly, while StarPU involves
more LOC and higher cyclomatic complexity than oneTBB,
our programmers found StarPU easier to write due to its C-
styled interface. Although there is no standard way to con-
clude the programmability of a library, we believe our mea-
surement highlights the expressiveness of Taskflow and its
ease of use from a real user’s perspective.

The overall performance is shown in Fig. 17. Using 40
CPUs and 1 GPU, Taskflow is consistently faster than
oneTBB and StarPU across all incremental timing iterations.
The gap continues to enlarge as increasing iteration num-
bers; at 100 and 1000 iterations, Taskflow reaches the goal in
3.45 and 39.11 minutes, whereas oneTBB requires 5.67 and
4.76 minutes and StarPU requires 48.51 and 55.43 minutes,
respectively. Note that the gain is significant because a typi-
cal timing closure algorithm can invoke millions to billions
of iterations that take several hours to finish [30]. We
observed similar results at other CPU numbers; in terms of
the runtime speed-up over 1 CPU (all finish in 113 minutes),
Taskflow is always faster than oneTBB and StarPU, regard-
less of the CPU count. Speed-up of Taskflow saturates at
about 16 CPUs (3�), primarily due to the inherent irregular-
ity of the algorithm (see Fig. 16). The memory footprint
(middle of Fig. 17) shows the benefit of our conditional task-
ing. By reusing condition tasks in the incremental timing
loop, we do not suffer significant memory growth as
oneTBB and StarPU. On a vertical scale, increasing the num-
ber of CPUs bumps up the memory usage of both methods,
but Taskflow consumes much less because we use only sim-
ple atomic operations to control wasteful steals. In terms of
energy efficiency (bottom of Fig. 17, measured on all cores
plus LLC using power/energy-pkg [3]), our scheduler is
very power-efficient in completing the timing analysis

workload, regardless of iterations and CPU numbers.
Beyond 16 CPUs where performance saturates, Taskflow
does not suffer from increasing power as oneTBB and
StarPU, because our scheduler efficiently balances the num-
ber of workers with dynamic task parallelism.

We next compare the throughput of each implementation
by corunning the same program. Corunning programs is a
common strategy for optimization tools to search for the
best parameters. The effect of worker management propa-
gates to all simultaneous processes. Thus, the throughput
can be a good measurement for the inter-operability of a
scheduling algorithm. We corun the same timing analysis
program up to seven processes that compete for 40 CPUs
and 1 GPU. We use the weighted speedup to measure the sys-
tem throughput, which is the sum of the individual
speedup of each process over a baseline execution time [23].

TABLE 3
Programming Effort on VLSI Timing Closure

Method LOC #Tokens CC WCC Dev Bug

Taskflow 3176 5989 30 67 3.9 13%
oneTBB 4671 8713 41 92 6.1 51%
StarPU 5643 13952 46 98 4.3 38%

CC: maximum cyclomatic complexity in a single function.
WCC: weighted cyclomatic complexity of the program.
Dev: hours to complete the implementation.
Bug: time spent on the debugging versus coding task graphs.

Fig. 17. Runtime, memory, and power data of 1000 incremental timing
iterations (up to 11K tasks and 17K dependencies per iteration) on a
large design of 1.6M gates.

Fig. 18. Throughput of corunning timing analysis workloads on two itera-
tion numbers using 40 CPUs and 1 GPU.

1316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

A throughput of one implies that the corun’s throughput is
the same as if the processes were run consecutively. Fig. 18
plots the throughput across nine coruns at two iteration
numbers. Both Taskflow and oneTBB achieve decent
throughput greater than one and are significantly better
than StarPU. We found StarPU keep workers busy most of
the time and has no mechanism to balance the number of
workers with dynamically generated task parallelism. For
irregular HTDGs akin to Fig. 16, worker management is crit-
ical for corunning processes. When task parallelism
becomes sparse, especially around the decision-making
point of an iterative control flow, our scheduler can adap-
tively reduce the wasteful steals based on the active worker
count, and we offer a stronger bound than oneTBB (Theo-
rem 3). Saved wasteful resources can thus be used by other
concurrent programs to increase the throughput.

Fig. 19 shows the performance advantage of CUDA
Graph and its cost in handling this large GPU-accelerated
timing analysis workloads. The line cudaFlow represents our
default implementation using explicit CUDA graph con-
struction. The other two lines represent the implementation
of the same GPU task graph but using stream and event
insertions (i.e., non-CUDA Graph). As partially shown in
Fig. 16, our cudaFlow composes over 1K dependent GPU
operations to compute the interconnect delays. For large
GPU workloads like this, the benefit of CUDA Graph is
clear; we observed 9–17% runtime speed-up over stream-
based implementations. The performance improvement
mostly comes from reduced kernel call overheads and
graph-level scheduling optimizations by CUDA runtime.
Despite the improved performance, cudaFlow incurs higher
memory costs because CUDA Graph stores all kernel
parameters in advance for optimization. For instance, creat-
ing a node in CUDA Graph can take over 300 bytes of opa-
que data structures.

7.4 Large Sparse Neural Network Inference

We applied Taskflow to solve the MIT/Amazon Large
Sparse Deep Neural Network (LSDNN) Inference Chal-
lenge, a recent effort aimed at new computing methods for
sparse AI analytics [35]. Each dataset comprises a sparse
matrix of the input data for the network, 1920 layers of neu-
rons stored in sparse matrices, truth categories, and the bias
values used for the inference. Preloading the network to the
GPU is impossible. Thus, we implement a model decompo-
sition-based kernel algorithm inspired by [19] and construct
an end-to-end HTDG for the entire inference workload.

Unlike VLSI incremental timing analysis, this workload is
both CPU- and GPU-heavy. Fig. 20 illustrates a partial
HTDG. We create up to 4 cudaFlows on 4 GPUs. Each cuda-
Flow contains more than 2K GPU operations to run parti-
tioned matrices in an iterative data dispatching loop formed
by a condition task. Other CPU tasks evaluate the results
with a golden reference. Since oneTBB FlowGraph and
StarPU do not support in-graph control flow, we unroll
their task graph across fixed-length iterations found offline.

Fig. 21 compares the performance of solving a 1920-lay-
ered LSDNN each of 4096 neurons under different CPU and
GPU numbers. Taskflow outperforms oneTBB and StarPU
in all aspects. Both our runtime and memory scale better
regardless of the CPU and GPU numbers. Using 4 GPUs,
when performance saturates at 4 CPUs, we do not suffer
from further runtime growth as oneTBB and StarPU. This is
because our work-stealing algorithm more efficiently con-
trol wasteful steals upon available task parallelism. On the
other hand, our memory usage is 1.5-1.7� less than oneTBB
and StarPU. This result highlights the benefit of our condi-
tion task, which integrates iterative control flow into a cyclic
HTDG, rather than unrolling it statically across iterations.

We next compare the throughput of each implementation
by corunning the same inference program to study the inter-
operability of an implementation. We corun the same

Fig. 19. Comparison of runtime and memory between cudaFlow (CUDA
Graph) and stream-based execution in the VLSI incremental timing anal-
ysis workload.

Fig. 20. A partial HTDG of 4 cudaFlows (purple boxes), 8 conditioned
cycles (green diamonds), and 6 static tasks (other else) for the inference
workload.

Fig. 21. Runtime and memory data of the LSDNN (1920 layers, 4096
neurons per layer) under different CPU and GPU numbers.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1317

inference program up to nine processes that compete for 40
CPUs and 4 GPUs. We use weighted speedup to measure
the throughput. Fig. 22 plots the throughput of corunning
inference programs on two different sparse neural net-
works. Taskflow outperforms oneTBB and StarPU across all
coruns. oneTBB is slightly better than StarPU because
StarPU tends to keep all workers busy all the time and
results in large numbers of wasteful steals. The largest dif-
ference is observed at five coruns of inferencing the
1920�4096 neural network, where our throughput is 1.9�
higher than oneTBB and 2.1� higher than StarPU. These
CPU- and GPU-intensive workloads highlight the effective-
ness of our heterogeneous work stealing. By keeping a per-
domain invariant, we can control cross-domain wasteful
steals to a bounded value at any time during the execution.

We study the performance of our cudaFlow capturer
using different numbers of streams (i.e., max streams). For
complex GPU workloads like Fig. 20, stream concurrency is
crucial to GPU performance. As shown in Fig. 23, explicit
construction of a CUDA graph using cudaFlow achieves the
best performance, because the CUDA runtime can dynami-
cally decide the stream concurrency with internal optimiza-
tion. For applications that must use existing stream-based
APIs, our cudaFlow capturer achieves comparable perfor-
mance as cudaFlow by using two or four streams. Taking
the 1920�65536 neural network for example, the difference
between our capturer of four streams and cudaFlow is only
10 ms. For this particular workload, we do not observe any
performance benefit beyond four streams. Application
developers can fine-tune this number.

We finally compare the performance of cudaFlow with
stream-based execution. As shown in Fig. 24, the line cuda-
Flow represents our default implementation using explicit
CUDA graph construction, and the other lines represent
stream-based implementations for the same task graph using

one, two, and four streams. The advantage of CUDA Graph
is clearly demonstrated in this large machine learning work-
load of over 2K dependent GPU operations per cudaFlow.
Under four streams that deliver the best performance for the
baseline, cudaFlow is 1.5� (1451 versus 2172) faster at one
GPU and is 1.9� (750 versus 1423) faster at four GPUs. The
cost of this performance improvement is increased memory
usage because CUDA Graph needs to store all the operating
parameters in the graph. For instance, under four streams,
cudaFlow has 4% and 6% higher memory usage than
stream-based execution at one and four GPUs, respectively.

8 RELATED WORK

8.1 Heterogeneous Programming Systems

Heterogeneous programming systems are the main driving
force to advance scientific computing. Directive-based pro-
gramming models [5], [6], [7], [25], [38] allow users to aug-
ment program information of loop mapping onto CPUs/
GPUs and data sharing rules to designated compilers for
automatic parallel code generation. These models are good
at loop-based parallelism but cannot handle irregular task
graph patterns efficiently [37]. Functional approaches [2],
[15], [17], [18], [20], [24], [32], [33], [34], [41] offer either
implicit or explicit task graph constructs that are more flexi-
ble in runtime control and on-demand tasking. Each of these
systems has its pros and cons. However, few of them enable
end-to-end expressions of heterogeneously dependent tasks
with general control flow.

8.2 Heterogeneous Scheduling Algorithms

Among various heterogeneous runtimes, work stealing is a
popular strategy to reduce the complexity of load balanc-
ing [16], [41] and has inspired the designs of many parallel
runtimes [2], [12], [39], [40], [52]. A key challenge in work-
stealing designs is worker management. Instead of keeping
all workers busy most of the time [16], [17], [32], both
oneTBB [2] and BWS [23] have developed sleep-based strat-
egies. oneTBB employs a mixed strategy of fixed-number
worker notification, exponential backoff, and noop assem-
bly. BWS modifies OS kernel to alter the yield behavior. [42]
takes inspiration from BWS and oneTBB to develop an
adaptive work-stealing algorithm to minimize the number
of wasteful steals. Other approaches, such as [13] that tar-
gets a space-sharing environment, [47] that tunes hardware
frequency scaling, [22], [48] that balance load on distributed
memory, [21], [27], [51], [57] that deal with data locality,
and [49] that focuses on memory-bound applications have

Fig. 22. Throughput of corunning inference workloads on two 1920-lay-
ered neural networks, one with 4096 neurons per layer and another with
65536 neurons per layer.

Fig. 23. Performance of our cudaFlow capturer using 1, 2, 4, and 8
streams to complete the inference of two neural networks.

Fig. 24. Comparison of runtime and memory between cudaFlow (CUDA
Graph) and stream-based execution.

1318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

improved work stealing in certain performance aspects, but
their results are limited to the CPU domain. How to migrate
the above approaches to a heterogeneous target remains an
open question.

In terms of GPU-based task schedulers, Whippletree [50]
design a fine-grained resource scheduling algorithm for
sparse and scattered parallelism atop a custom program
model. [45] leverages reinforcement learning to place
machine learning workloads onto GPUs. Hipacc [46] intro-
duces a pipeline-based optimization for CUDA graphs to
speed up image processing workloads. [55] develops a com-
piler to transforms OpenMP directives to a CUDA graph.
These works have primarily focused on scheduling GPU
tasks in various applications, which are orthogonal to our
generic heterogeneous scheduling approaches.

9 CONCLUSION

In this paper, we have introduced Taskflow, a lightweight
task graph computing system to streamline the creation of
heterogeneous programs with control flow. Taskflow has
introduced a new programming model that enables an end-
to-end expression of heterogeneously dependent tasks with
general control flow. We have developed an efficient work-
stealing runtime optimized for latency, energy efficiency,
and throughput, and derived theory results to justify its effi-
ciency. We have evaluated the performance of Taskflow on
both micro-benchmarks and real applications. As an exam-
ple, Taskflow solved a large-scale machine learning prob-
lem up to 29% faster, 1.5� less memory, and 1.9� higher
throughput than the industrial system, oneTBB, on a
machine of 40 CPUs and 4 GPUs.

Taskflow is an on-going project under active development.
We are currently exploring three directions: First, we are
designing a distributed tasking model based on partitioned
taskflow containers with each container running on a remote
machine. Second, we are extending our model to incorporate
SYCL [9] to provide a single-source heterogeneous task graph
programming environment. The author Dr. Huang is a mem-
ber of SYCL Advisory Panel and is collaborating with the
working group to design a new SYCL Graph abstraction.
Third, we are researching automatic translation methods
between different task graph programming models using
Taskflow as an intermediate representation. Programming-
model translation has emerged as an important research area
in today’s diverse computing environments because no one
programming model is optimal across all applications. The
recent 2021 DOE X-Stack program directly calls for novel
translation methods to facilitate performance optimizations
on different computing environments.

One important future direction is to collaborate with
Nvidia CUDA teams to design a conditional tasking inter-
face within the CUDA Graph itself. This design will enable
efficient control-flow decisions to be made completely in
CUDA runtime, thereby largely reducing the control-flow
cost between CPU and GPU.

ACKNOWLEDGMENTS

We appreciate all Taskflow contributors and reviewers’
comments for improving this article.

REFERENCES

[1] DARPA. “Intelligent design of electronic assets (IDEA) program,”
2021. [Online]. Available: https://www.darpa.mil/program/
intelligent-design-of-electronic-assets

[2] Intel oneTBB, 2021. [Online]. Available: https://github.com/
oneapi-src/oneTBB

[3] Linux kernel profiler, 2021. [Online]. Available: https://man7.
org/linux/man-pages/man1/perf-stat.1.html

[4] Nvidia CUDA graph, 2021. [Online]. Available: https://devblogs.
nvidia.com/cuda-10-features-revealed/

[5] OmpSs, 2021. [Online]. Available: https://pm.bsc.es/ompss
[6] OpenACC, 2021. [Online]. Available: http://www.openacc-

standard.org
[7] OpenMP, 2021. [Online]. Available: https://www.openmp.org/
[8] SLOCCount, 2021. [Online]. Available: https://dwheeler.com/

sloccount/
[9] SYCL, 2021. [Online]. Available: https://www.khronos.org/sycl/
[10] Taskflow gitHub, 2021. [Online]. Available: https://taskflow.

github.io/
[11] Two-phase commit protocol, 2021. [Online]. Available: http://

www.1024cores.net/home/lock-free-algorithms/eventcounts
[12] K. Agrawal, C. E. Leiserson, and J. Sukha, “Nabbit: Executing task

graphs using work-stealing,” in Proc. IEEE Int. Symp. Parallel Dis-
trib. Process., 2010, pp. 1–12.

[13] K. Agrawal, Y. He, and C. E. Leiserson, “Adaptive work stealing
with parallelism feedback,” in Proc. 12th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., 2007, pp. 112–120.

[14] T. Ajayi, et al., “Toward an open-source digital flow: First learn-
ings from the openROAD project,” in Proc. 56th Annu. Des. Auto-
mat. Conf., 2019, pp. 1–4.

[15] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fast-
flow: High-Level and Efficient Streaming on Multicore. Hoboken, NJ,
USA: Wiley, 2017, ch. 13, pp. 261–280.

[16] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” in Proc. 10th Annu. ACM
Symp. Parallel Algorithms Architectures, 1998, pp. 119–129.

[17] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency Comput. : Pract. Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[18] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independencewith logical regions,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2012, pp. 1–11.

[19] M. Bisson and M. Fatica, “A GPU implementation of the sparse
deep neural network graph challenge,” in Proc. IEEE High Perform.
Extreme Comput. Conf., 2019, pp. 1–8.

[20] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J.
J. Dongarra, “PaRSEC: Exploiting heterogeneity to enhance
scalability,” Comput. Sci. Eng., vol. 15, no. 6, pp. 36–45, 2013.

[21] Q. Chen, M. Guo, and H. Guan, “LAWS: Locality-aware work-
stealing for multi-socket multi-core architectures,” ACM Trans.
Architecture Code Optim., 2014, pp. 1–24.

[22] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J.
Nieplocha, “Scalable work stealing,” In Proc. Conf. High Perform.
Comput. Netw., Storage Anal., 2009, pp. 1–11.

[23] X. Ding, K. Wang, P. B. Gibbons, and X. Zhang, “BWS: Balanced
work stealing for time-sharing multicores,” in Proc. 7th ACM Eur.
Conf. Comput. Syst., 2012, pp. 365–378.

[24] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns,” J. Parallel Distrib. Comput., vol. 74, no. 12,
pp. 3202–3216, 2014.

[25] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “XKaapi: A
runtime system for data-flow task programming on heteroge-
neous architectures,” in Proc. IEEE 27th Int. Symp. Parallel Distrib.
Process., 2013, pp. 1299–1308.

[26] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated
pash-based timing analysis,” in Proc. 39th Int. Conf. Comput.-Aided
Des., 2021, pp. 1–9.

[27] Yi Guo, “A scalable locality-aware adaptive work-stealing sched-
uler for multi-core task parallelism,” Ph.D. dissertation, Rice
Univ., Houston, TX, USA, 2010.

[28] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated Static Timing
Analysis,” in Proc. 39th Int. Conf. Comput.-Aided Des., 2020, pp. 1–8.

[29] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremen-
tal timing analysis,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 2015, pp. 895–902.

HUANG ETAL.: TASKFLOW: A LIGHTWEIGHT PARALLEL AND HETEROGENEOUS TASKGRAPH COMPUTING SYSTEM 1319

https://www.darpa.mil/program/intelligent-design-of-electronic-assets
https://www.darpa.mil/program/intelligent-design-of-electronic-assets
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://devblogs.nvidia.com/cuda-10-features-revealed/
https://devblogs.nvidia.com/cuda-10-features-revealed/
https://pm.bsc.es/ompss
http://www.openacc-standard.org
http://www.openacc-standard.org
https://www.openmp.org/
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/
https://www.khronos.org/sycl/
https://taskflow.github.io/
https://taskflow.github.io/
http://www.1024cores.net/home/lock-free-algorithms/eventcounts
http://www.1024cores.net/home/lock-free-algorithms/eventcounts

[30] T.-W. Huang, G. Guo, C.-X. Lin, and M. Wong, “OpenTimer v2: A
new parallel incremental timing analysis engine,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 40, no. 4, pp. 776–789,
Apr. 2021.

[31] T.-W. Huang, D.-L. Lin, Y. Lin, and C.-X. Lin, “Taskflow: A gen-
eral-purpose parallel and heterogeneous task programming sys-
tem,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., to be
published, doi: 10.1109/TCAD.2021.3082507.

[32] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-
taskflow: A general-purpose parallel task programming system at
scale,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 40,
no. 8, pp. 1687–1700, Aug. 2021.

[33] H. Kaiser, T. Heller, B. Adelstein-Lelbach , A. Serio, and D. Fey,
“HPX: A Task Based Programming Model in a Global Address
Space,” in Proc. 8th Int. Conf. Partitioned Glob. Address Space Pro-
gram. Models, 2014, pp. 6:1–6:11.

[34] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent
object oriented system based on C++,” in ACM SIGPLAN Notices,
1993, pp. 91–108.

[35] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Rob-
inett, and S. Samsi, “Sparse deep neural network graph challenge,”
in IEEEHigh Perform. Extreme Comput. Conf., 2019, pp. 1–7.

[36] N. M. Lê, A. Pop, A. Cohen, and F. Z. Nardelli, “Correct and effi-
cient work-stealing for weak memory models,” in Proc. 18th ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2013, pp. 69–80.

[37] S. Lee and J. S. Vetter, “Early evaluation of directive-based GPU
programming models for productive exascale computing,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2012,
pp. 1–11.

[38] S. Lee and R. Eigenmann, “OpenMPC: Extended openMP pro-
gramming and tuning for GPUs,” in Proc. ACM/IEEE Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2010, pp. 1–11.

[39] D. Leijen,W. Schulte, and S. Burckhardt, “TheDesign of a Task Par-
allel Library,”ACMSIGPLANNotices, vol. 44, pp. 227–241, 2009.

[40] C. E. Leiserson, “The Cilk++ concurrency platform,” in Proc. 46th
Annu. Des. Automat. Conf., 2009, pp. 522–527.

[41] J. V. F. Lima, T. Gautier, V. Danjean, B. Raffin, and N. Maillard,
“Design and analysis of scheduling strategies for multi-CPU and
multi-GPU architectures,” Parallel Comput., vol. 44, pp. 37–52, 2015.

[42] C.-X. Lin, T.-W. Huang, and M. D. F. Wong, “An efficient work-
stealing scheduler for task dependency graph,” in Proc. IEEE 26th
Int. Conf. Parallel Distrib. Syst., 2020, pp. 64–71.

[43] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan,
“ABCDPlace: Accelerated Batch-based Concurrent Detailed Place-
ment on Multi-threaded CPUs and GPUs,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 39, no. 12, pp. 5083–5096, Dec.
2020.

[44] Y.-S. Lu and K. Pingali, “Can parallel programming revolutionize
EDA tools?,” in Advanced Logic Synthesis. Berlin, Germany:
Springer, 2018, pp. 21–41.

[45] A. Mirhoseini, et al., “Device placement optimization with rein-
forcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2007,
pp. 2430–2439.

[46] B. Qiao, M. A. €Ozkan, J. Teich, and F. Hannig, “The best of both
worlds: Combining CUDA graph with an image processing DSL,”
in Proc. 57th ACM/IEEE Des. Automat. Conf., 2020, pp. 1–6.

[47] H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language
runtimes,” in Proc. 19th Int. Conf. Architectural Support Program.
Lang. Operat. Syst., 2014, pp. 513–528.

[48] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishna-
moorthy, “Lifeline-based global load balancing,” in Proc. 16th
ACM Symp. Princ. Pract. Parallel Program., 2011, pp. 201–212.

[49] S. Shiina andK. Taura, “Almost deterministic work stealing,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2019, pp. 1–16.

[50] M. Steinberger, M. Kenzel, P. Boechat, B. Kerbl, M. Dokter, and
D. Schmalstieg, “Whippletree: Task-based scheduling of dynamic
workloads on the GPU,” ACM Trans. Graph., vol. 33, no. 6,
pp. 1–11, Nov. 2014.

[51] W. Suksompong, C. E. Leiserson, and T. B. Schardl, “On the effi-
ciency of localized work stealing,” Inf. Process. Lett., vol. 116, no. 2,
pp. 100–106, Feb. 2016.

[52] O. Tardieu, H. Wang, and H. Lin, A work-stealing scheduler for
X10’s task parallelism with suspension,” ACM SIGPLAN Notices,
vol. 47, no. 8, pp. 267–276, 2012.

[53] D. F. Wong, H. W. Leong, and C. L. Liu., Simulated Annealing for
VLSI Design. Norwell, MA, USA: Kluwer Academic, 1988.

[54] B. Xu et al., “MAGICAL: Toward fully automated analog IC layout
leveraging human and machine intelligence: Invited paper,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2019, pp. 1–8.

[55] C. Yu, S. Royuela, and E. Qui~nones, “OpenMP to CUDA graphs:
A compiler-based transformation to enhance the programmability
of NVIDIA devices,” in Proc. Int. Workshop Softw. Compilers Embed-
ded Syst., 2020, pp. 42–47.

[56] Y. Yu, et al., “Dynamic control flow in large-scale machine
learning,” in Proc. 13th EuroSys Conf., 2018, pp. 1–15.

[57] H. Zhao, et al., “Bandwidth and locality aware task-stealing for
manycore architectures with bandwidth-asymmetric memory,”
ACM Trans. Architect. Code Optim., vol. 15, no. 4, pp. 1–26, 2018.

Tsung-Wei Huang received the BS and MS
degrees from the Department of Computer Sci-
ence, National Cheng Kung University, Tainan,
Taiwan, in 2010 and 2011, respectively, and the
PhD degree from the Department of Electrical
and Computer Engineering (ECE), University of
Illinois at Urbana-Champaign. He is currently an
assistant professor with the Department of ECE,
University of Utah. His research interests include
building software systems for parallel computing
and timing analysis. He was the recipient of

prestigious 2019 ACM SIGDA Outstanding PhD Dissertation Award for
his contributions to distributed and parallel VLSI timing analysis in his
PhD thesis.

Dian-Lun Lin received the BS degree from the
Department of Electrical Engineering, Taiwan’s
Cheng Kung University, and the MS degree from
the Department of Computer Science, National
Taiwan University. He is currently working toward
the PhD degree with the Department of Electrical
and Computer Engineering, University of Utah.
His research interests include parallel and hetero-
geneous computing with a specific focus on CAD
applications.

Chun-Xun Lin received the BS degree in electri-
cal engineering from the National Cheng Kung
University, Tainan, Taiwan, and the MS degree in
electronics engineering from the Graduate Insti-
tute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan, in 2009 and 2011,
respectively, and the PhD degree from the
Department of Electrical and Computer Engineer-
ing, University of Illinois at Urbana-Champaign, in
2020. His research interest include parallel
processing.

Yibo Lin (Member, IEEE) received the BS degree
inmicroelectronics fromShanghai Jiaotong Univer-
sity in 2013, and the PhD degree from the Depart-
ment of Electrical and Computer Engineering,
University of Texas at Austin, in 2018. He is cur-
rently an assistant professor with the Department
of Computer Science associated with the Center
for Energy-Efficient Computing and Applications,
Peking University, China. His research interests
include physical design, machine learning applica-
tions, GPUacceleration, and hardware security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

http://dx.doi.org/10.1109/TCAD.2021.3082507

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

