
iG-kway: Incremental k-way Graph Partitioning on GPU
Wan Luan Lee1, Shui Jiang2, Dian-Lun Lin1, Che Chang1, Boyang Zhang1,

Yi-Hua Chung1, Ulf Schlichtmann3, Tsung-Yi Ho2, Tsung-Wei Huang1

1University of Wisconsin–Madison, USA
2The Chinese University of Hong Kong, Hong Kong

3Technical University of Munich, Germany
{wlee329, dianlun.lin, cchang289, bzhang523, yihua.chung, tsung-wei.huang}@wisc.edu,

{sjiang22, tyho}@cse.cuhk.edu.hk, ulf.schlichtmann@tum.de

Abstract—Recent advances in GPU-accelerated graph partitioning have
achieved significant performance gains but remain limited to full graph par-
titioning, lacking support for incremental updates. This limitation is critical
in CAD applications, where circuit graphs undergo iterative, incremental
modifications during optimization. We present iG-kway, the first GPU-based
incremental k-way graph partitioner. iG-kway features an incrementality-
aware data structure and a refinement kernel that efficiently updates only
affected vertices with minimal quality loss. Experiments show that iG-kway
delivers up to 84× speedup over the state-of-the-art G-kway with comparable
partitioning quality.

I. INTRODUCTION

Graph partitioning is important for the design of efficient computer-
aided design (CAD) algorithms because it allows an algorithm to break
down a circuit graph into smaller and manageable pieces. However,
as circuit graphs continue to grow in size, graph partitioning becomes
increasingly time-consuming. For example, the sequential graph parti-
tioner, metis [1], can take several minutes to partition just one million-
node graph [2], and the runtime keeps increasing as the graph size
becomes larger. To reduce the runtime, researchers have proposed various
parallel graph partitioning algorithms [3]–[12]. For example, mt-metis [4]
parallelized multi-level graph partitioning using multi-core CPUs, but the
speedup is limited to only 8–16 CPU threads [13]. More recently, G-
kway [13], Jet [2], and GKSG [14], [15] explored data parallelism from
different stages of graph partitioning and offloaded time-consuming tasks
(e.g., coarsening, refinement) to GPU, achieving significant speedup for
large graphs.

In addition to partitioning an input graph once, which we refer to
as full graph partitioning (FGP), incremental graph partitioning (IGP)
is a critical enabler for many CAD applications that incorporate graph
partitioning in a loop. For instance, the multi-input RTL simulator [16],
[17] counts on iterative IGP to discover an optimal task graph for
heterogeneous scheduling [18], [19]; similarly, a timing-driven optimizer
also relies on iterative IGP to enhance the runtime performance of a
timing analyzer [20]. In these applications, when the graph is incre-
mentally modified, the partitioner must quickly refine the partitioning
result to maintain a reasonable turnaround time across thousands or even
millions of incremental iterations. As shown in Figure 1, IGP can save
a significant amount of time compared to FGP. Without IGP, we cannot
fully unlock the benefit of graph partitioning.

IGP has been studied in prior works [21]–[25], with a core focus on
refining small subgraph regions affected by graph modifications, rather
than performing a full re-partitioning from scratch. However, these works
are largely limited to CPU architectures and can become inefficient when
handling large graphs or when affected regions are large. Inspired by the
recent success of GPU-accelerated FGP [13], we believe that GPU can
also enhance the performance of IGP due to the large amount of data
parallelism exhibited by graph partitioning. More importantly, as more
CAD applications begin leveraging GPU acceleration [16], [17], [26]–
[40], there is an increasing need to re-target time-consuming CPU tasks
to GPU. For instance, a GPU-accelerated IGP will further speed up the

incremental task graph optimization process of [16] (which takes several
hours) while reducing the cost of moving and converting graph data
between CPU and GPU during iterative IGP.

Fig. 1. Incremental graph partitioning (IGP) and its runtime advantage over full
graph partitioning (FGP).

However, designing a GPU-parallel incremental graph partitioner is
very challenging. First, existing GPU partitioners [2], [13], [14] count
on static 1D arrays, such as the compressed sparse row (CSR), to store
graphs on GPU. These static data structures make it very challenging
to update graphs without rebuilding the entire arrays. Second, graph
modifiers can affect vertices in different subgraph regions of different
sizes. This varying number of affected vertices needs a clever strategy to
balance workloads across GPU threads during incremental partitioning.
Third, graph modifiers can potentially disrupt the balance of existing
partitions. We need an effective GPU kernel algorithm to quickly restore
partition balance while maintaining a satisfactory cut size.

While parallel IGP has been previously studied [24], [25], these efforts
focused on CPU architectures. Due to the distinct performance models
and memory hierarchies between CPU and GPU, we cannot directly ap-
ply these methods to GPU. For example, IOGP [24] introduced an online
graph partitioning algorithm for distributed graph databases. However,
IOGP focuses on optimizing data locality to minimize communication
overhead in a distributed computing environment, which differs from
our application focus. On the other hand, [25] formulated IGP into a
two-layer linear programming (LP) proxy problem and solved it using
multiple CPU threads. However, their methods require iteratively re-
formulating the proxy LP problem, which is inherently sequential and
cannot scale to large IGP problems.

To overcome these challenges, we introduce iG-kway, a GPU-parallel
k-way graph partitioner that efficiently supports incrementality. To the
best of our knowledge, this work is one of the earliest research on GPU-
parallel IGP, aiming to unlock the full potential of GPU-accelerated graph
partitioning. We summarize our key contributions as follows:

• We introduce a GPU-aware bucket-list graph representation that can
efficiently handle graph modifiers without requiring any data structure
rebuilds.

• We aggregate the affected vertices in a centralized buffer and dy-
namically assign GPU threads to process them, ensuring balanced
workloads across the GPU threads.

• We design a GPU-parallel refinement kernel algorithm that efficiently
re-balances partitions by moving affected vertices to a pseudo-partition
and performing incremental refinement.
We have evaluated the performance of iG-kway on industrial cir-

cuit graphs and compared our results with the state-of-the-art GPU-
accelerated graph partitioner, G-kway [13]. Experimental results show
that iG-kway achieves an average speedup of 84× over G-kway, with
comparable cut sizes.

II. PROBLEM DEFINITION AND NOTATION

Given an undirected graph, G = (V,E), where V is a set of vertices,
and E is a set of edges. Each element in E is of the form e = (u, v)
which represents the connection between u and v in V . For a vertex
v ∈ V , we denote the weight of v by Wv , while for an edge e ∈ E, we
denote the weight of e by We. For a vertex v ∈ V , its adjacent vertex
set is denoted as adj(v). Given k, if P = {p1, p2, . . . , pk} is a disjoint
partition of V , we call P a k-way partition. For v ∈ V , we define P (v) =
i if v ∈ pi, and its external neighbors as adjext(v) = {u ∈ adj(v) |
P (u) ̸= P (v)}, and its internal neighbor as adjint(v) = {u ∈ adj(v) |
P (u) = P (v)}. We define the cut size as

∑
e=(u,v)∈E,P (u)̸=P (v) We.

Cut size is widely used for evaluating the quality of a partition since it
represents the interconnect complexity among partitions. The partition
weight of pi is defined as Wpi =

∑
v∈pi

Wv.
The goal of FGP is to find a k-way partition from scratch that

satisfies the balance constraint while minimizing the cut size. The balance
constraint limits the maximum weight of pi as

Wpi ≤ Wpmax = (1 + ϵ)

∑
v∈V Wv

k
, 0 < ϵ ≪ 1

where Wpmax is the maximum allowable partition weight and ϵ is the
imbalance ratio given by applications. Given a partitioned graph, the
first goal of IGP is to apply a sequence of graph modifiers to the graph.
Each modifier corresponds to a vertex insertion (M+

u), a vertex deletion
(M−

u), an edge insertion (M+
(u,v)), or an edge deletion (M−

(u,v)). In most
IGP applications [16], [20], [41], the number of modifiers is smaller than
the graph size. The next goal of IGP is to efficiently refine the modified
graph without starting from scratch while minimizing the cut size.

III. OVERVIEW OF IG-KWAY

!"##$

%&'()$

+,-.&"./+,

!"#$%&"'($

)*+,-,.&#

/

0,*&121,.'#

%&'()$

2+3/4/*'./+,

0,*&121,.'#

&14/,121,.

!"##$

('&././+,/,%

!"##$('&././+,/,%

"-/,%$5678'9$

0,*&121,.'#$

('&././+,/,%
!!

!"

!#

:1-

;+

!!

!"

!#

!$

!%

!!

!"

!#

Fig. 2. Overview of the proposed incremental graph partitioner, iG-kway.

Figure 2 shows the overview of our GPU-parallel incremental k-
way graph partitioner, iG-kway, which consists of two main stages: full
partitioning (Section IV) and incremental partitioning (Section V). The
goal of the full partitioning is to derive a high-quality partition from
the original graph, which provides a foundation for the incremental
partitioner to optimize subsequently modified graphs. We utilize G-
kway [13] with a new constrained coarsening strategy to achieve a high-
quality partitioning result. On the other hand, the goal of incremental
partitioning is to update and refine the modified graph without starting
from scratch. Our incremental graph partitioning has two main stages,
incremental graph modification and incremental refinement, where (1) the
former introduces a bucket-list data structure that stores the input graph
and supports direct modification on GPU and (2) the latter introduces
a GPU kernel algorithm that balances and refines the partition after the
graph is incrementally modified.

IV. FULL PARTITIONING WITH CONSTRAINED COARSENING

We use the state-of-the-art GPU-accelerated multilevel graph parti-
tioner, G-kway [13] to perform full partitioning due to its high partition-
ing quality and fast runtime. G-kway employs a multilevel approach,
iteratively coarsening the graph into a smaller representation until it
reaches a manageable size, at which point the partitioning stage begins.
To accelerate the coarsening process, G-kway employs a union-find-
based coarsening that merges many vertices simultaneously to reduce the
graph size per iteration. Here, G-kway introduces a parallel union-find
algorithm to iteratively group vertices into subsets. Despite parallelism,
this approach may result in imbalances in coarsened vertex weights, as
each subset contains a varying number of vertices. This imbalance makes
it challenging for the subsequent partitioning stage to achieve a balanced
partition. Figure 3 (a) shows an example of G-kway’s union-find-based
coarsening, where G-kway groups vertices into two imbalanced subsets.

!!

!"

!#
!"

!$

!%

!&

!!

!"

!#

!$

!%

!&
!! !$!% !" !# !&

!"#!$%&' !"#!$%&(

)*+",&')*+",&()*+",&-

!+*%$.&#/&01#$0&23%435&$164&!"#!$%

!"# !$#

!"#!$%&' !"#!$%&(

! "

#

"

#

"

Fig. 3. Examples of two coarsening methods, including (a) G-kway’s union-find
based coarsening and (b) our constrained coarsening. Each vertex has an arrow
pointing to its selected neighbor, and its label n or n indicates the iteration
when it was grouped into the subset. Vertices circled in the red dashed line will
be coarsened into a coarsen vertex.

To address this issue, we divide the vertices in each subset into small,
fixed-size groups of size s and merge the vertices within each group
into a single coarsened vertex in parallel. This strategy reduces the
graph size in each iteration by merging multiple vertices simultaneously
while maintaining balanced coarsened vertex weights. To this end, a
straightforward solution is randomly selecting s vertices to form smaller
groups. However, this approach may result in poor partitioning quality, as
vertices that are far apart could end up in the same group and be merged
into a single coarsened vertex, distorting the original graph structure.
For instance, in Figure 3 (a), randomly dividing vertices in subset 1 can
result in placing distant vertices, v2 and v4, in the same group.

To address this problem, we modify G-kway’s union-find-based coars-
ening algorithm by labeling each vertex with the iteration in which it
joins a subset. Since vertices that are farther apart are merged into the
subset in later iterations, we can sort the vertices based on their labels
and divide them into groups, ensuring vertices that are closer together are
placed in the same group. Figure 3 (b) shows our constrained coarsening
strategy, where vertices are first sorted by iteration number in ascending
order within groups, and large subsets are divided into smaller groups
of size two. In this approach, groups of similar size merge into a single
coarsened vertex, producing more balanced coarsened vertex weights.

V. INCREMENTAL PARTITIONING

A. Bucket-list Graph Representation

Existing GPU graph partitioners [2], [13], [14] count on CSR to
store graphs on GPU. In CSR, all vertices’ neighbors are concatenated
into an adjacency list of size |E|, with an adjacency pointer recording
each vertex’s neighbor position. However, this statically packed data
structure makes modifying the graph very challenging without rebuilding
the structure. For instance, inserting an edge in the CSR data structure
requires shifting all elements in the adjacency list and updating their
adjacency pointers. Furthermore, updating the CSR is typically done on
the CPU, which introduces additional data movement and conversion
overhead between the CPU and GPU.

To overcome this challenge, we propose a bucket-list data structure
that supports efficient graph modifications directly on the GPU by storing

each vertex’s neighbors in pre-allocated buckets. We design the buckets
with 32 slots to align with the GPU warp size (32 threads), reducing
thread divergence and enabling efficient intra-warp communication using
CUDA warp-level primitives [42]. To avoid rebuilding the bucket-list
data structure, we allocate extra buckets for each vertex to accommodate
future edge insertions. The number of buckets for vertex u is determined
by the following formula: ⌈

D(u)

32

⌉
+ γ

where D(u) is the degree of u (i.e., the number of neighbors of u)
and γ is the number of the extra buckets per vertex (by default, iG-kway
sets γ to one). To accommodate bigger graph modifications, applications
can set a higher γ. Figure 4 (a) shows an example of our bucket-list
data structure, where each bucket contains four slots. All buckets are
concatenated into a bucket-list, with a bucket pointer recording each
vertex’s bucket position within the list. To avoid reallocating memory
when more buckets are required (e.g., due to vertex insertion), we pre-
allocate a large block of memory for the bucket-list and use a pointer to
track the current number of buckets.

Fig. 4. An example of our bucket-list data structure, where each vertex has
a bucket, and each bucket contains four slots. Empty slots are denoted by ∅.
Figures (a) and (b) show the graph before and after applying the following graph
modifiers: M−

v2 , M+
v4 , M−

(v2,v1)
, M−

(v1,v2)
, M+

(v4,v3)
, and M+

(v3,v4)
.

B. Incremental Graph Modification

1) Edge Modifiers: To efficiently handle M+
(u,v) (insert an edge

(u, v)), we use a GPU warp to locate an empty slot in vertex u’s
buckets through fast intra-warp communication and insert vertex v to the
first empty slot. Algorithm 1 presents our edge insertion algorithm. All
threads in the warp first fetch the number of buckets allocated to u and
the start position of its buckets from bucket ptr (lines 4-5). Threads then
process one bucket at a time until an empty slot is found or all buckets
are checked (line 6). To efficiently locate an empty slot, each thread
fetches a slot value in the bucket and uses the warp-level primitive [42],
__ballot_sync, to simultaneously evaluate whether its slot is empty,
storing the results in a bitmask (lines 7-8). If an empty slot is found,
__ffs returns the first empty slot (line 9), and threads insert the edge
into this slot and then terminate. (lines 10-12). If no slot is empty, each
thread increments the bucket counter and continues looking for an empty
slot in the next bucket (line 13).

We handle M−
(u,v) using the same strategy as Algorithm 1 except

that instead of locating an empty slot, threads within the warp work
simultaneously to find v in u’s buckets and mark v as empty.

2) Vertex Modifiers: To delete a vertex u, a straightforward approach
is to remove its buckets from the bucket-list. However, this approach
can incur significant overhead, as it needs to recalculate the bucket
pointer and rebuild the bucket-list. To address this problem, we use a
vertex status array to track each vertex’s current status (deleted or active)
without removing its buckets from the bucket-list. Algorithm 2 presents

our approach for handling the vertex modifier (M+
u and M−

u) using a
GPU warp. To handle M−

u , threads within the same warp first mark u as
deleted in the vertex status array (line 5) and cooperatively remove all of
u’s neighbors by marking all slots in its buckets as empty (lines 11-13).
Similarly, to handle M+

u , threads within the same warp first mark u as
active in the vertex status array (line 8). Then, they assign u a single
bucket and add the bucket to the end of the bucket-list by updating the
bucket pointers accordingly (lines 9-10). Finally, threads initialize all
slots in u’s buckets as empty (lines 11-13).

Algorithm 1: Edge Insertion

Input: bucket list, bucket ptr, M+
(u,v)

, thread index in a GPU warp
lane id

1 parallel for each thread in a GPU warp
2 slot ← -1
3 bucket cnt ← 0
4 bucket start ← bucket ptr[u]
5 num bucket ← bucket ptr[u + 1] - bucket start
6 while slot == -1 && bucket cnt < num bucket
7 nbr ← bucket list[bucket start + bucket cnt × 32 + lane id]
8 if empty ← ballot sync(FULL, nbr == ∅)
9 slot ← ffs(if empty) - 1

// empty slot found
10 if slot ̸= -1
11 bucket list[bucket start + bucket cnt × 32 + slot] ← v
12 return
13 bucket cnt++

Algorithm 2: Vertex Insertion / Deletion

Input: bucket list, bucket ptr, vertex status, M+
u or M−

u , lane id
1 parallel for each thread in a GPU warp
2 bucket cnt ← 0
3 bucket start ← bucket ptr[u]
4 if M−

u

5 vertex status[u] ← deleted
6 num bucket ← bucket ptr[u + 1] - bucket start
7 else if M+

u

8 vertex status[u] ← active
9 num bucket ← 1

10 bucket ptr[u + 1] ← bucket start + num bucket
11 while bucket cnt < num bucket
12 bucket list[bucket start + bucket cnt × 32 + lane id] ← ∅
13 bucket cnt++

C. Incremental Refinement

Once the graph is incrementally modified, the existing partitioning
result may become invalid due to the change in graph structure and
balance condition. For example, adding too many vertices can cause the
partition to violate the balance constraint, while inserting edges may
require relocating vertices to reduce the cut size. To refine a modified
graph without starting from scratch, one possible approach is to use the
independent-set-based refinement algorithm in G-kway [13]. However,
G-kway’s refinement algorithm does not account for potential imbalances
that may occur after applying graph modifiers. Additionally, because it
lacks IGP support, G-kway refines all vertices on the partition boundary
(i.e., vertices with adjext ̸= 0), which is unnecessary when only local
subgraph regions are affected. To address this problem, we propose an
efficient incremental refinement algorithm that restores partition balance
and refines only the vertices affected by graph modifiers. Our algorithm
consists of two steps, partition balancing and parallel refinement, ex-
plained below:

Algorithm 3: Partition Balancing
Input: bucket ptr, bucket list, partition, vertex in pseudo,

vertex in pseudo size
Input: affected vertex initialize to false
// assign a graph modifier to a GPU warp

1 parallel for each thread in the GPU warp
2 if vertex insertion M+

u

3 partition[u] ← pseudo
4 pos ← atomicAdd(vertex in pseudo size, 1)
5 vertex in pseudo[pos] = u
6 else if edge insertion M+

(u,v)
or edge deletion M−

(u,v)

7 affected vertex[u] ← true ; affected vertex[v] ← true
// assign each u in affected_vertex to a GPU warp

8 parallel for each thread in the GPU warp
9 if partition[u] == pseudo

10 return
11 lane id ← thread index in the GPU warp
12 bucket cnt ← 0
13 bucket start ← bucket ptr[u]
14 num bucket ← bucket ptr[u + 1] - bucket start
15 cur par ← partition[u]
16 while bucket cnt < num bucket
17 nbr ← bucket list[bucket start + bucket cnt × 32 + lane id]
18 nbr par ← nbr == ∅? ∅ : partition[nbr]
19 adjext += popc(ballot sync(FULL, nbr part != cur par

&& nbr != ∅))
20 adjint += popc(ballot sync(FULL, nbr part == cur par))
21 bucket cnt++
22 if adjext > adjint && lane id == 0
23 pos ← atomicAdd(vertex in pseudo size, 1)
24 vertex in pseudo[pos] = u
// assign u in vertex_in_pseudo to a GPU thread

25 parallel for each GPU thread
26 partition[u] ← pseudo

1) Partition Balancing: Incremental graph modifications can cause the
partition to become imbalanced. To address this issue, we temporarily
move newly added vertices to a pseudo-partition to prevent them from
increasing the current partition weights. Additionally, to maintain the
balance constraint after removing vertices, we also move the affected
vertices to the pseudo-partition to reduce partition weights.

A vertex is considered affected by graph modifiers if: (1) it has been
directly modified (e.g., its edges have been deleted or inserted), or
(2) its neighbors have been modified, as changes in their surrounding
structure may require refinement. However, not all affected vertices
require refinement. If a vertex has as many or more adjint than adjext,
moving it to another partition will not reduce the cut size and may even
increase it. To avoid this, we filter out such vertices and do not move them
to the pseudo-partition. We use a centralized buffer, vertex in pseudo,
to store vertices in the pseudo-partition, as they are often scattered
across different parts of the graph, making it challenging to balance
the workload across GPU threads. By aggregating these vertices to the
buffer, we can dynamically assign GPU threads to handle them, ensuring
balanced workloads and significantly increasing GPU performance.

Algorithm 3 presents our partition balancing algorithm. We use an
array, affected vertex, of size |V | to record whether a vertex is
affected. We assign each graph modifier to a GPU warp to mark directly
modified vertices as affected. Threads assigned to M+

u move the vertex to
the pseudo-partition immediately by changing its partition in partition
array, which records the partition assignment of each vertex, and insert
it to vertex in pseudo (lines 2-5). On the other hand, threads handling
M+

(u,v) or M−
(u,v) mark u and v as affected (lines 6-7). Then, we

check if they can be filtered out. To do this, we assign each vertex in
affected vertex to a GPU warp. Threads assigned to vertices already
in the pseudo-partition terminate early (lines 9-10), while the remaining
threads process one bucket at a time, with each thread fetching a

neighbor and its corresponding partition (lines 17-18). Threads efficiently
calculate external and internal neighbors using the warp-level primitive
__ballot_sync to evaluate each neighbor’s partition, storing the
results in a bitmask and counting them with the warp-level primitive
__popc (lines 19-20). They then continue processing the next bucket
until all are completed. Next, the first thread in the warp checks if the
vertex has fewer adjint than adjext (line 22). If so, it adds the vertex
to vertex in pseudo, without immediately updating its partition in the
partition array (lines 23-24).

The proposed strategy in Algorithm 3 prevents data races by deferring
partition updates until threads in other warps have completed their calcu-
lations. Once all affected vertices have been processed, we launch another
GPU kernel to update the partitions of vertices in vertex in pseudo.
We then move vertices with affected neighbors by assigning each vertex
u in the pseudo-partition to a GPU warp. Threads in the same warp
mark all neighbors of u as affected, using the same approach to filter
out the neighbors whose adjext is less than adjint and move the rest to
the pseudo-partition.

!! !"

!#

!$

!%

&'()*+,+-.)

-!!"#
/ #

," ,# ,!$%&'(

! 0 0 !

123425627819:5

;'.< !8=,#> ;'.< $8=,#>

?"=@)$

"*"
> ?"=@)%

#*"
> ?#=@)$

"*"
> ?#=@)%

#*"
>

! ! 0 !

Fig. 5. Illustration of constructing delta p wgt to calculate the accumulated
delta partition weights for two partitions, p1 and p2, across two vertex moves
using segmented scan. All vertices have a weight equal to one.

2) Parallel Refinement: Once the partition is balanced and affected
vertices are in the pseudo-partition, we refine them by moving each
vertex to its most suitable partition in parallel. We define the most
suitable partition for a vertex u as the partition to which moving u
from the pseudo-partition introduces the smallest cut size (i.e., the
partition with most of u’s neighbors), while maintaining the balanced
partition. However, moving adjacent vertices in parallel requires costly
synchronization to determine the most suitable partition accurately [13].
For example in Figure 5, if vertices v1 and v2 move concurrently from
the pseudo-partition to other partitions, v1 may initially select either
p1 or p2 as its most suitable partition. However, if v2 moves to p1,
v1 should update its choice to p1. Without synchronization between
v1 and v2, v1 can select the most suitable partition incorrectly. To
overcome this synchronization challenge, we move non-adjacent vertices
from vertex in pseudo in parallel. For each non-adjacent vertex u, we
create a vertex move mpar,#nbr

u , where par is u’s most suitable partition,
and #nbr is the number of neighbors in par, and insert the vertex move
to the vertex moves buffer to form a sequence of vertex moves.

Algorithm 4 presents our parallel refinement algorithm. To find non-
adjacent vertices from vertex in pseudo, we assign each vertex u in
vertex in pseudo to a GPU warp. Threads in the warp cooperatively
process the bucket of u one at a time, with each thread fetching a
neighbor and its partition (lines 6-7). Threads then efficiently check if any
thread has a neighbor in the pseudo-partition with a vertex ID less than
u’s vertex ID using __any_sync (line 8). If such a neighbor exists,
threads terminate early, as u is not selected to move because its neighbor
is being moved in this iteration (lines 9-10). Threads that do not find such
neighbors then continue to check neighbors stored in other buckets. Next,
threads with a vertex selected to move cooperatively identify the most
suitable partition for u by counting u’s neighbors in each partition p
with a weight that does not exceed Wpmax . To accomplish this, each
thread fetches a neighbor stored in a bucket along with its partition and
uses the same strategy (i.e., warp-level primitive) as in Algorithm 3 to
efficiently count neighbors belonging to p (lines 15-19). After processing

all buckets, the threads update max nbr and max nbr p, stored in
shared memory, if either 1) the number of neighbors in partition p
exceeds the current maximum max nbr, or 2) p has the same number
of neighbors as max nbr but a lower partition weight (line 20). Finally,
the first thread in the warp creates a vertex move and inserts it to the
vertex moves (lines 21-23).

After finding a sequence of vertex moves, we need to select a
subsequence that, when applied, satisfies the balance constraint while
introducing minimal cut size. To achieve this, we first sort the vertex
moves in descending order by #nbr, prioritizing vertices with strong
connections with their most suitable partition. To find a subsequence
that satisfies the balance constraint, we create a delta p wgt array with
j segments, each corresponding to a partition and with a length equal
to the number of vertex moves, to record changes in partition weights if
those vertex moves are applied. Each element in delta p wgt records
the delta partition weight of a vertex move for a partition. We define the
delta partition weight of a vertex move, mpar,#nbr for a partition par
as follows:

δi(m
par,#nbr
u) =

{
Wu, i = par
0, otherwise

We then perform a parallel segmented scan on delta p wgt to accumu-
late these changes for each partition.

Figure 5 illustrates the calculation of accumulated delta partition
weights for two partitions, performed using a parallel segmented scan
with two vertex moves. Each element in delta p wgt records the delta
partition weight for a partition after applying a vertex move. The first
two elements (i.e., segment 1) correspond to partition p1, while the last
two elements (i.e., segment 2) correspond to partition p2. For example,
delta p wgt[0] records the partition weight change for the first vertex
move in partition p1. We then perform a parallel segmented scan on
delta p wgt to accumulate these changes for each partition. After the
scan, the sth element in each segment holds the accumulated change in
partition weight from the first to the sth vertex move in each partition,
representing the accumulated weight change over this subsequence. We
then identify the longest subsequence of vertex moves that satisfies
the balance constraint to apply as many vertex moves as possible in
parallel. In this example, both vertex moves can be applied, as neither
p1’s partition weight plus delta p wgt[1] nor p2’s plus delta p wgt[3]
exceeds Wpmax. We then repeat the same process until all vertices are
moved from the pseudo-partition.

VI. EXPERIMENTAL EVALUATION

We evaluated the performance of iG-kway using seven industrial
circuit graphs generated by [13], [43]. Additionally, we tested iG-kway
on three large non-circuit graphs (coAuthorsCiteseer, adaptive, and NLR)
from the DIMACS Graph Partitioning Challenge [44] to demonstrate its
applicability beyond CAD algorithms. Table I lists the statistics of each
graph. In our experiment, we applied 100 incremental iterations based on
the setting of TAU 2015 Incremental Timing Contest [41], where each
iteration involves tens to hundreds of design modifiers that randomly
remove/insert vertices and edges from/into the graph.

We consider G-kway [13], a state-of-the-art GPU-accelerated k-way
graph partitioner, as our baseline. To have a fair comparison with G-kway
and focus on incrementality, we replace its coarsening algorithm with our
constrained coarsening to achieve better performance. Furthermore, since
G-kway counts on the CPU to generate a graph CSR on the GPU, we
modify the graph and regenerate its CSR for each incremental iteration,
then apply G-kway to partition the modified graph. Hereafter, we refer
to this baseline as G-kway†.

We implemented iG-kway and G-kway† using C++17 and CUDA 12.0
and compiled them with nvcc on a host compiler of GCC-8 with -

Algorithm 4: Parallel Refinement
Input: bucket list, bucket ptr, partition
Input: vertex moves, vertex moves size initialized to zero
Shared memory: max nbr p, max nbr initialized to zero
// assign a vertex u in vertex_in_pseudo to a GPU warp

1 parallel for each thread in the GPU warp
2 lane id ← thread index in the GPU warp
3 bucket start ← bucket ptr[u]
4 num bucket ← bucket ptr[u + 1] - bucket start
5 while bucket cnt < num bucket
6 nbr ← bucket list[bucket start + bucket cnt × 32 + lane id]
7 nbr par ← nbr == ∅? ∅ : partition[nbr]
8 if adj move = any sync(FULL, nbr par == pseudo && nbr

< u)
9 if if adj move ̸= 0

10 return
11 bucket cnt++
12 for p ∈ {1 . . . k} where Wp < Wpmax
13 bucket cnt ← 0
14 num nbr in p ← 0
15 while bucket cnt < num bucket
16 nbr ← bucket list[bucket start + bucket cnt × 32 + lane id]
17 nbr par ← nbr == ∅? ∅ : partition[nbr]
18 num nbr in p += popc(ballot sync(FULL, nbr part

== p))
19 bucket cnt++
20 cmp and update max nbr and max nbr p in shared memory
21 if lane id == 0
22 pos ← atomicAdd(vertex moves size, 1)
23 vertex moves[pos] ← mpar,#nbr

u

24 find the longest subsequence in parallel (Figure 5)

O3 enabled. We ran experiments on a 64-bit Linux machine with 16
Intel i7-11700 CPU cores at 2.50 GHz and 128 GB RAM. Our GPU
was an A6000 with 48 GB memory. In all experiments, we set the
imbalance ratio (ϵ) to 3%, the group size (s) to six, and terminated
the coarsening algorithm when the number of vertices dropped below
35× k or when fewer than 90% of the vertices could be coarsened. All
results are averaged over 10 runs.

A. Overall Performance Comparison

Table I compares the runtime and cut size between iG-kway and G-
kway† at k = 2. To highlight the advantages of iG-kway, we break
down the runtime into graph modification and partitioning. Since G-
kway† does not support dynamic updates of CSR on GPU, iG-kway
is always faster than G-kway† in graph modification. We attribute this
runtime advantage to iG-kway’s GPU-aware data structure, which stores
each vertex’s neighbors in buckets to rapidly respond to graph modifiers.
In contrast, G-kway†’s CSR data structure is relatively static, requiring
a complete rebuild to modify the graph at each iteration. Consequently,
for large graphs (e.g., mem ctrl), modification can become a significant
bottleneck for G-kway†, whereas iG-kway’s modification time remains
consistently small, regardless of graph size.

In terms of partitioning time, iG-kway outperforms G-kway† across
all graphs with an average speedup of 84×. This speedup is due to iG-
kway’s incremental refinement algorithm, which identifies and refines
only the vertices affected by graph modifiers, eliminating the need for
re-partitioning required by G-kway†. Regarding the cut size, iG-kway
finds a cut size comparable to G-kway† for all graphs. We attribute this
to the effectiveness of our incremental refinement algorithm, which first
moves vertices to a pseudo-partition to restore balance, and then moves
them again to reduce the cut size.

Figure 6 details the comparison of partitioning time and cut size over
100 incremental iterations for the circuit usb under two different values
of k. At the first iteration, we do not observe a significant runtime
difference between iG-kway and G-kway† since both are FGP. However,

TABLE I
OVERALL COMPARISON OF RUNTIME (MODIFICATION AND PARTITIONING) AND CUT SIZE BETWEEN IG-KWAY AND G-KWAY† AT k = 2. ALL TIMES ARE

MEASURED IN SECONDS. A CUT SIZE IMPROVEMENT GREATER THAN ONE INDICATES IG-KWAY CAN FIND A BETTER CUT SIZE.
Benchmark Modification Time (s) Partitioning Time (s) Cut Size

Name # Vertices # Edges iG-kway G-kway† iG-kway G-kway† Speedup iG-kway G-kway† Impr.
tv80 3,901,702 5,298,851 0.02 0.36 0.18 14.88 82.67× 4,721 4,774 1.01

mem ctrl 32,445,075 42,670,885 0.11 3.37 0.58 46.07 79.43× 5,945 5,659 0.95
usb 139,479 180,510 0.01 0.01 0.12 10.16 84.67× 5,798 5,701 0.98

vga lcd 1,869,688 23,447,678 0.07 2.13 0.38 31.27 82.29× 502 496 0.99
wb dma 9,646,140 12,208,324 0.04 1.04 0.26 20.75 79.81× 5,483 5,489 1.00

systemcase 10,897,616 14,386,851 0.04 1.10 0.28 22.61 80.75× 4,670 4,699 1.00
des perf 303,690 387,292 0.01 0.03 0.13 10.98 84.46× 5,097 5,150 1.01

coAuthorsCiteseer 227,320 814,134 0.01 0.03 0.13 11.20 86.15× 25,853 25,537 0.99
adaptive 6,815,744 13,624,320 0.03 0.97 0.51 50.12 98.27× 1,809 2,029 1.12

NLR 4,163,763 2,487,976 0.02 1.02 0.25 21.64 86.56× 4,611 4,600 1.00
Average 84.51× 1.00

1 10 50 90 100
0

50

100

Sp
ee

du
p

iG-kway vs G-kway†
k = 2 k = 32

1 10 50 90 100
0

0.5

1

C
ut

Si
ze

Im
pr

. iG-kway vs G-kway†
k = 2 k = 32

Fig. 6. Speedup (left) and cut size improvement (right) of iG-kway over G-kway†
for the usb circuit over 100 incremental iterations.

as the number of incremental iterations increases, iG-kway’s runtime
advantage over G-kway† becomes more pronounced. The speedup of
iG-kway grows proportionally with the number of incremental iterations
for both k values. In terms of cut size, iG-kway achieves a comparable
value to G-kway† across all iterations (within ±3%).

B. Runtime and Cut Size Analysis under Varying k

tv80mem ctrlwb dma adaptive
0

50

100

Sp
ee

du
p

iG-kway vs G-kway†
k = 2 k = 4 k = 8 k = 16 k = 32

tv80mem ctrlwb dma adaptive
0

0.5

1

1.5

2

C
ut

Si
ze

Im
pr

.

k = 2 k = 4 k = 8 k = 16 k = 32

Fig. 7. The speedup (top) and cut size improvement (bottom) of iG-kway over
G-kway† at different k values. A cut size improvement above one indicates that
iG-kway can find a better cut size.

Figure 7 shows the speedup and cut size improvement of iG-kway
over G-kway† at k = {2, 4, 8, 16, 32} on three circuit graphs (wb dma,
mem ctrl, and tv80) and a large non-circuit graph (adaptive). Regardless
of k, iG-kway is consistently faster than G-kway†. iG-kway achieves up
to a 98× speedup over G-kway† at k = 2. However, as k increases, the
speedup decreases because iG-kway needs to examine more partitions
to determine a suitable partition for each affected vertex. Despite this,
iG-kway still achieves up to a 62× speedup at k = 32. Regarding the cut
size, iG-kway achieves a comparable result with G-kway† on different k.
These results highlight the effectiveness and efficiency of iG-kway over
G-kway† in incremental graph partitioning.

50
0.1

K
0.5

K 1K 5K

40

60

80

100

Sp
ee

du
p

iG-kway vs G-kway†
k = 2 k = 32

50
0.1

K
0.5

K 1K 5K

0.6
0.8
1

1.2
1.4

C
ut

Si
ze

Im
pr

. iG-kway vs G-kway†
k = 2 k = 32

Fig. 8. The speedup (left) and cut size improvement (right) of iG-kway over
G-kway† for the usb circuit across 100 incremental iterations each with varying
numbers of graph modifiers (50–5K).

C. Incrementality Analysis

Figure 8 shows the speedup (left) and cut size improvement (right)
achieved by iG-kway over G-kway† for the circuit usb across 100
incremental iterations each with varying numbers of graph modifiers
(ranging from 50 to 5K) per iteration. When the number of graph
modifiers per iteration is small, the advantage of iG-kway is more
remarkable. For instance, with 50 graph modifiers, iG-kway is up to 80×
faster than G-kway† while obtaining a comparable cut size. However,
as the number of graph modifiers per iteration increases, the speedup
decreases due to the growing number of affected vertices. More affected
vertices require iG-kway to spend more time refining the partition.
When the number of graph modifiers exceeds 5K per iteration, iG-kway
struggles to find a partition with a decent cut size. This happens because
after applying many graph modifiers (e.g., 5K×100 in this case), the
graph becomes very different from its original form. This large difference
makes it difficult for iG-kway to effectively optimize the graph, as its
incremental refinement strategy relies on local graph structure. In such
cases, applications can resort to FGP using G-kway†, especially when
the number of graph modifiers reaches 50% of the graph’s size.

VII. CONCLUSION

In this paper, we have introduced iG-kway, a GPU-parallel incremental
k-way graph partitioner. iG-kway introduces an incrementality-aware
data structure to support graph modifications directly on GPU. Atop
this data structure, iG-kway introduces a GPU kernel algorithm that
can efficiently refine affected vertices after the graph is incrementally
modified, with minimal impact on partitioning quality. Experimental
results show that iG-kway achieves an average speedup of 84× over
the state-of-the-art G-kway, with comparable cut sizes.

ACKNOWLEDGMENT

This project is supported by NSF grants 2235276, 2349144, 2349143,
2349582, and 2349141, as well as the Research Grants Council of Hong
Kong SAR (No. CUHK14207523).

REFERENCES

[1] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for
irregular graphs,” Journal of Parallel and Distributed computing, vol. 48,
no. 1, pp. 96–129, 1998.

[2] M. S. Gilbert, K. Madduri, E. G. Boman, and S. Rajamanickam, “Jet:
Multilevel graph partitioning on graphics processing units,” SIAM Journal
on Scientific Computing, vol. 46, no. 5, pp. B700–B724, 2024.

[3] X. Sui, D. Nguyen, M. Burtscher, and K. Pingali, “Parallel graph partition-
ing on multicore architectures,” in Languages and Compilers for Parallel
Computing: 23rd International Workshop, LCPC 2010, Houston, TX, USA,
October 7-9, 2010. Revised Selected Papers 23. Springer, 2011, pp. 246–
260.

[4] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in 2013
IEEE 27th International Symposium on Parallel and Distributed Processing.
IEEE, 2013, pp. 225–236.

[5] ——, “A parallel hill-climbing refinement algorithm for graph partitioning,”
in 2016 45th International Conference on Parallel Processing (ICPP).
IEEE, 2016, pp. 236–241.

[6] Y. Akhremtsev, P. Sanders, and C. Schulz, “High-quality shared-memory
graph partitioning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 11, pp. 2710–2722, 2020.

[7] L. Gottesbüren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier, “Deep
multilevel graph partitioning,” arXiv preprint arXiv:2105.02022, 2021.

[8] S. V. Patil and D. B. Kulkarni, “Graph partitioning using heuristic kernighan-
lin algorithm for parallel computing,” in Next Generation Information
Processing System: Proceedings of ICCET 2020, Volume 2. Springer, 2021,
pp. 281–288.

[9] P. Sanders and D. Seemaier, “Distributed deep multilevel graph partitioning,”
in European conference on parallel processing. Springer, 2023, pp. 443–
457.

[10] M. F. Faraj and C. Schulz, “Recursive multi-section on the fly: Shared-
memory streaming algorithms for hierarchical graph partitioning and process
mapping,” in 2022 IEEE International Conference on Cluster Computing
(CLUSTER), 2022, pp. 473–483.

[11] P. Sanders and D. Seemaier, “Brief announcement: Distributed unconstrained
local search for multilevel graph partitioning,” in Proceedings of the 36th
ACM Symposium on Parallelism in Algorithms and Architectures, ser. SPAA
’24. New York, NY, USA: Association for Computing Machinery, 2024,
p. 443–445. [Online]. Available: https://doi.org/10.1145/3626183.3660257

[12] I. Bustany, G. Gasparyan, A. B. Kahng, I. Koutis, B. Pramanik, and Z. Wang,
“An open-source constraints-driven general partitioning multi-tool for vlsi
physical design,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[13] W. L. Lee, D.-L. Lin, T.-W. Huang, S. Jiang, T.-Y. Ho, Y. Lin, and B. Yu, “G-
kway: Multilevel GPU-Accelerated k-way Graph Partitioner,” in ACM/IEEE
Design Automation Conference (DAC), 2024.

[14] B. Goodarzi, F. Khorasani, V. Sarkar, and D. Goswami, “High performance
multilevel graph partitioning on gpu,” in 2019 International Conference on
High Performance Computing & Simulation (HPCS). IEEE, 2019, pp.
769–778.

[15] B. Goodarzi, M. Burtscher, and D. Goswami, “Parallel graph partitioning on
a cpu-gpu architecture,” in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2016, pp. 58–66.

[16] D.-L. Lin, H. Ren, Y. Zhang, B. Khailany, and T.-W. Huang, “From RTL
to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch
Stimulus,” in ACM International Conference on Parallel Processing (ICPP),
2022.

[17] D.-L. Lin, Y. Zhang, H. Ren, S.-H. Wang, B. Khailany, and T.-W. Huang,
“GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm
with Multiple Inputs,” in ACM/IEEE Design Automation Conference (DAC),
2023.

[18] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System,” IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 2022.

[19] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast Task-
based Parallel Programming using Modern C++,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2019.

[20] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. F. Wong, “OpenTimer v2: A
New Parallel Incremental Timing Analysis Engine,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2021.

[21] L. Durbeck and P. Athanas, “Incremental streaming graph partitioning,”
in 2020 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2020, pp. 1–8.

[22] W. Ju, J. Li, W. Yu, and R. Zhang, “igraph: an incremental data processing
system for dynamic graph,” Frontiers of Computer Science, vol. 10, pp.
462–476, 2016.

[23] W. Fan, M. Liu, C. Tian, R. Xu, and J. Zhou, “Incrementalization of graph
partitioning algorithms,” Proceedings of the VLDB Endowment, vol. 13,
no. 8, pp. 1261–1274, 2020.

[24] D. Dai, W. Zhang, and Y. Chen, “Iogp: An incremental online graph parti-
tioning algorithm for distributed graph databases,” in Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing, 2017, pp. 219–230.

[25] C.-W. Ou and S. Ranka, “Parallel incremental graph partitioning,” IEEE
transactions on Parallel and Distributed Systems, vol. 8, no. 8, pp. 884–
896, 1997.

[26] S. Lin, J. Liu, E. F. Young, and M. D. Wong, “Gamer: Gpu-accelerated
maze routing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 2, pp. 583–593, 2022.

[27] S. Liu, Y. Pu, P. Liao, H. Wu, R. Zhang, Z. Chen, W. Lv, Y. Lin, and
B. Yu, “Fastgr: Global routing on cpu–gpu with heterogeneous task graph
scheduler,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 7, pp. 2317–2330, 2022.

[28] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing anal-
ysis,” in IEEE/ACM International Conference on Computer-aided Design
(ICCAD), 2020.

[29] G. Guo, T.-W. Huang, and M. D. F. Wong, “Fast STA Graph Partitioning
Framework for Multi-GPU Acceleration,” in IEEE/ACM Design, Automation
and Test in Europe Conference (DATE), 2023.

[30] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. Wong,
“A GPU-Accelerated Framework for Path-Based Timing Analysis,” IEEE
Transactions on Computer-aided Design of Integrated Circuits and Systems
(TCAD), 2023.

[31] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Critical Path
Generation with Path Constraints,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2021.

[32] ——, “GPU-accelerated Path-based Timing Analysis,” in IEEE/ACM Design
Automation Conference (DAC), 2021.

[33] S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. Young, and M. Wong, “Gcs-
timer: Gpu-accelerated current source model based static timing analysis,”
in Proceedings of the 61st ACM/IEEE Design Automation Conference, ser.
DAC ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3649329.3655983

[34] T. Liu, L. Chen, X. Li, M. Yuan, and E. F. Young, “Finemap: A fine-grained
gpu-parallel lut mapping engine,” in 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2024, pp. 392–397.

[35] E. F. Young, “Gpu acceleration in physical synthesis,” in Proceedings
of the 2023 International Symposium on Physical Design, ser. ISPD ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p. 167.
[Online]. Available: https://doi.org/10.1145/3569052.3578912

[36] J. Jiang, L. Zou, W. Zhao, Z. He, T. Chen, and B. Yu, “Pdrc:
Package design rule checking via gpu-accelerated geometric intersection
algorithms for non-manhattan geometry,” in Proceedings of the 61st
ACM/IEEE Design Automation Conference, ser. DAC ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3649329.3657367

[37] P. Liao, Y. Zhao, D. Guo, Y. Lin, and B. Yu, “Analytical die-to-die 3-
d placement with bistratal wirelength model and gpu acceleration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 43, no. 6, pp. 1624–1637, 2024.

[38] Z. He, Y. Zuo, J. Jiang, H. Zheng, Y. Ma, and B. Yu, “Opendrc: An efficient
open-source design rule checking engine with hierarchical gpu acceleration,”
in 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023, pp.
1–6.

[39] Z. Yu, G. Chen, Y. Ma, and B. Yu, “A gpu-enabled level-set method for mask
optimization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 2, pp. 594–605, 2023.

[40] Z. He, Y. Ma, and B. Yu, “X-check: Gpu-accelerated design rule checking
via parallel sweepline algorithms,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, ser. ICCAD ’22.
New York, NY, USA: Association for Computing Machinery, 2022.
[Online]. Available: https://doi.org/10.1145/3508352.3549383

[41] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental timing
analysis,” in IEEE/ACM ICCAD, 2015, pp. 882–889.

[42] D. Guide, “Cuda c++ programming guide,” NVIDIA, July, 2020.
[43] T.-W. Huang and M. Wong, “OpenTimer: A High-Performance Timing

Analysis Tool,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2015.

[44] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “10th dimacs
implementation challenge workshop,” 2012.

