
Task-parallel Heterogeneous Programming System for Logic
Simulation

by

Dian-Lun Lin

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 07/11/2024

The dissertation is approved by the following members of the Final Oral Committee:
Tsung-Wei Huang, Professor, Electrical and Computer Engineering, Chair
Azadeh Davoodi, Professor, Electrical and Computer Engineering
Mikko Lipasti, Professor, Electrical and Computer Engineering
Dan Negrut, Professor, Mechanical Engineering
Haoxing Ren, Director, NVIDIA Design Automation Research

© Copyright by Dian-Lun Lin 2024
All Rights Reserved

i

To my family and friends, whose unwavering support and encouragement have
been my guiding light throughout this journey.

ii

acknowledgments

Completing this PhD thesis has been a challenging yet profoundly reward-
ing journey, and I am deeply grateful for the support and encouragement
I have received from many individuals and institutions along the way.

First and foremost, I would like to express my sincere gratitude to my
advisor, Dr. Tsung-Wei Huang. Your guidance, insight, and unwavering
support have been instrumental in shaping this research. Your patience
and constructive feedback have challenged me to grow as a researcher and
thinker, and for that, I am truly thankful.

I would also like to extend my heartfelt thanks to my thesis committee
members, Dr. Haoxing Ren, Dr. Azadeh Davoodi, Dr. Mikko Lipasti, and
Dr. Dan Negrut. Your valuable suggestions and critical evaluations have
greatly enhanced the quality of this work.

I would also like to thank my mentors during my internship at NVIDIA
Research, Yanqing Zhang, Haoxing Ren, and Brucek Khailany. Your guid-
ance and mentorship have been pivotal to my professional growth.

Special thanks go to my colleagues and fellow PhD candidates in our
group. The camaraderie and collaborative spirit within our group have
made the long hours of research more enjoyable and fulfilling. I am
particularly grateful for your friendship and support.

I am also indebted to the administrative and technical staff at Uni-
versity of Wisconsin-Madison. Your assistance with logistical, technical,
and administrative matters has been invaluable throughout my doctoral
studies.

On a personal note, I would like to thank my family for their unwa-
vering support and encouragement. To my parents, En-Rong Lin and
Mei-Ying Chen, thank you for believing in me and for your endless love
and sacrifices.

I would also like to thank my girlfriend, Wan Luan Lee, your love,

iii

patience, and understanding have been my anchor during the most chal-
lenging times of this journey.

Finally, I thank my two fluffy pets, Luna and April. Thank you for
always being there and for helping me stay focused and motivated.

This thesis is a testament to the collective support of all these wonderful
people and institutions. Thank you all for being a part of this journey.

iv

contents

Contents iv

List of Tables vi

List of Figures ix

Abstract xiv

Previous Work xvi

1 SNIG: A Novel Inference Algorithm for Large Sparse Neural
Network using Task Graph Parallelism 1
1.1 Abstract 1
1.2 Introduction 2
1.3 Problem Formulation of Large Sparse DNN Inference 4
1.4 State of the Art: The BF and Pipeline Methods 5
1.5 SNIG 5
1.6 Experimental Results 10
1.7 Conclusion 18

2 cudaFlow: Efficient GPU Computation using Task Graph Paral-
lelism 20
2.1 Abstract 20
2.2 Introduction 20
2.3 The Proposed GPU Task Graph Programming Model 22
2.4 Transform a cudaFlowCapturer to a CUDA Graph 25
2.5 Experimental Results 29
2.6 Conclusion 39

v

3 RTLflow: A GPU Acceleration Flow for RTL Simulation with
Batch Stimulus 40
3.1 Abstract 40
3.2 Introduction 40
3.3 Background and Motivation 43
3.4 RTLflow 48
3.5 Experimental Results 62
3.6 Conclusion 72

4 GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic
Algorithm with Multiple Inputs 74
4.1 Abstract 74
4.2 Introduction 74
4.3 Background 78
4.4 GenFuzz 79
4.5 Experimental Results 87
4.6 Conclusion 93

5 TaroRTL: Accelerating RTL Simulation using Coroutine-based
Heterogeneous Task Graph Scheduling 95
5.1 abstract 95
5.2 Introduction 95
5.3 The Motivation of Using Coroutine in RTL Simulation 99
5.4 TaroRTL101
5.5 Experimental Results109
5.6 Conclusion115

6 Conclusion119

Bibliography121

vi

list of tables

1.1 The statistics of each DNN benchmark in the Challenge [1]. . . 2
1.2 Overall inference rate (gigaedges processed per second) and

runtime performance (seconds) of SNIG, BF, and GPipe∗ across
one, two, three, and four GPUs. Bold text represents the best
solution in the corresponding benchmark. 13

2.1 Comparison of CUDA graph sizes (#nodes+#edges) on lin-
ear chain, embarrassing parallelism, divide and conquer, map-
reduce, and random DAG task graphs between cudaFlow and
cudaFlowCapturer under different stream numbers 1 (RR1), 2
(RR2), 4 (RR4), and 8 (RR8). RR4− and RR8− represent our
algorithm without the dependency pruning. 32

2.2 Comparison of the number of streams issued by the CUDA
runtime to run each task graph between cudaFlow and cud-
aFlowCapturer. 33

2.3 The modeled task graph size (#nodes+#edges) and the statis-
tics of each DNN benchmark (model size and image nonzeros). 37

2.4 Comparison of the execution time between cudaFlow and cud-
aFlowCapturer for completing six DNN models. 37

2.5 Comparison of number of streams issued by the CUDA runtime
between cudaFlow and cudaFlowCapturer for completing six
DNN models. 38

3.1 Statistics of the benchmarks and results of transpiled code for
Verilator and RTLflow. The results present lines of code (LOC)
and transpilation time (Ttrans). 62

vii

3.2 Comparison of elapsed simulation times between Verilator
(with 80 CPU threads) and RTLflow (with one A6000 GPU) on
Spinal and NVDLA for completing 256, 1024, 4096, 16384, and
65536 stimulus at 10K, 100K, and 500K clock cycles. All signal
outputs match the golden reference generated by Verilator. . . 65

3.3 Runtime comparison in terms of improvement (↑) between
RTLflow with and without GPU-aware partitioning algorithm
(RTLflow−g) for NVDLA with 4096 and 16384 stimulus at 10K,
50K, 100K cycles. 68

3.4 Performance advantage of CUDA Graph execution in multi-
stimulus simulation workloads, measured on Spinal and
NVDLA with 4096 stimulus under different numbers of cy-
cles. 69

3.5 Runtime comparison in terms of improvement (↑) between
RTLflow with and without pipeline scheduling (RTLflow−p)
for Spinal and NVDLA with 100K cycles at different numbers
of stimulus. 71

4.1 Overall performance comparison between DIFUZZRTL and
GenFuzz on different benchmarks for achieving 50%, 70%,
and 100% coverage using reg coverage. The benchmark statis-
tics show Verilog lines of code (Verilog LOC) and number of
achieved coverage (#Coverage) by running DIFUZZRTL for 48
hours. Bold text represents speed-up. 89

4.2 Runtime Comparison for finding bugs in BOOMCore between
DIFUZZRTL and GenFuzz. 93

viii

5.1 Comparison between RTLflow and TaroRTL on Spinal, riscv-
mini, and NVDLA designs using different numbers of threads
for completing 32768 input stimuli. ELOC and SLOC represent
lines of code for evaluation and lines of code for setting inputs,
respectively. Bold texts represent the best results. All simula-
tion results match the golden reference provided by RTLflow. 118

5.2 Comparison among Taskflow, Boost Fiber, and TaroRTL on a
WF task graph with 10K nodes using eight threads. 118

ix

list of figures

1.1 Architecture of SNIG. 6
1.2 Illustration of our inference kernel (Algorithm 1). 8
1.3 Execution time with different numbers of GPUs. 15
1.4 Execution time with different neurons under 4 GPUs. 15
1.5 Peak GPU memory usage under 4 GPUs. 16
1.6 Execution timeline of each method on completing 65536 neu-

rons and 1920 layers under 4 GPUs. 16
1.7 Execution time with different block dimensions

(dim_x,dim_y) on 1920 layers under 4 GPUs. The total
number of threads dim_x× dim_y remains 1024. 17

1.8 Execution time with different batch sizes on 1920 layers under
4 GPUs. 18

2.1 An example of GPU task graph. 22
2.2 Transformation of a task graph to a CUDA graph using two

streams. 26
2.3 Illustration of our algorithm on Figure 2.2 using two streams. . 28
2.4 Execution time of each task graph at different task graph sizes

running on cudaFlow and cudaFlowCapturer of RR1, RR2, RR4,
and RR8. 34

2.5 Comparison of peak GPU memory usage of each task graph
at different task graph sizes between cudaFlow and cudaFlow-
Capturer. 35

2.6 (a) Task granularity and (b) co-run of random DAG running
on cudaFlow and cudaFlowCapturer. 36

2.7 [2] describes the inference workload in a task graph. A blue
node represents a memory copy, and a red node represents a
kernel. 37

x

2.8 Comparison of peak GPU memory usage at different number
of layers between cudaFlow and cudaFlowCapturer (RR4). . . 38

3.1 RTLflow explores both stimulus- and structure-level paral-
lelisms to achieve high-performance RTL simulation using GPU
computing. 41

3.2 Runtime breakdown of a simulation benchmark in terms of
setting inputs, evaluating the design, and the corresponding
GPU utilization rate under different numbers of stimulus. . . . 48

3.3 Overview of RTLflow. 49
3.4 An RTL AST that consists of two modules (m1 and m2). m1

contains two cells (c1 and c2), two variables (in and sum), and
one function (func). The RTL AST requires seven AST nodes
to describe one line of Verilog code (the assignment statement
in black). 51

3.5 (a) Simple ARRSEL subtree and (b) Recursive ARRSEL subtree.
Right part shows generated C++/CUDA code using Verilator
or RTLflow. 52

3.6 GPU memory allocation using one fixed-width memory ar-
ray of type uint8_t. in is a 6-bit variable, and sum is a 14-bit
variable stored into two memory locations, sum1 and sum2. . . 53

3.7 GPU memory allocation for Figure 3.4. Each cell (c1 and c2)
contains two variables (in and sum). A variable is stored in
the smallest array of types uint8_t, uint16_t, uint32_t, and
uint64_t that fits the variable width. 54

3.8 GPU-aware partitioning algorithm using MCMC to explore the
best combination of weights under real operating conditions
(compile + run). 57

xi

3.9 Stream-based execution versus CUDA Graph-based execution
of the CUDA graph for two cycles. Stream-based execution
incurs repetitive CUDA call overheads to schedule dependent
kernels at each cycle. 60

3.10 Partial simulation timeline of CUDA Graph-based execution
and stream-based execution using the data extracted from
Nvidia Nsight Systems [3]. Blue bars represent calls to launch
CUDA kernels and green bars represent CUDA synchroniza-
tion calls. 60

3.11 The proposed pipeline scheduling algorithm to enable efficient
overlap between CPU and GPU tasks. 61

3.12 Runtime comparisons across different hardware platforms for
NVDLA with 16384 stimulus and 10K cycles. 66

3.13 Runtime growth over increasing number of stimulus for Verila-
tor, ESSENT, and RTLflow on riscv-mini. 67

3.14 Partial RTL task graphs for Spinal with and without our GPU-
aware partitioning algorithm. Each task is a GPU kernel that
evaluates the design with batch stimulus. 70

3.15 Comparison of GPU utilization between RTLflow with and
without pipeline scheduling (RTLflow−p) for simulating Spinal
and NVDLA with different numbers of stimulus (under 10K
cycles). 71

3.16 A snapshot of utilization timeline for RTLflow with and without
pipeline scheduling, reported by Nvidia Nsight Systems [3]. . 73

4.1 Comparison between GenFuzz and existing hardware fuzzers. 76
4.2 Conventional single-input hardware fuzzing flow. 78
4.3 Overview of GenFuzz. 80
4.4 Overview of our GA-based fuzzing framework. 81

xii

4.5 The proposed progressive coverage and delta coverage calcula-
tion. The progressive coverage and delta coverage of the first
input is identical. 85

4.6 Comparison of coverage throughput among GenFuzz, DIFUZ-
ZRTL, and RFUZZ on RocketCore, BOOMCore, Sodor3Stage,
and Sodor5Stage. The x-axis uses the number of words and the
number of cycles. 90

4.7 Coverage growth over increasing numbers of iterations for Gen-
Fuzz, GenFuzz with mutation rate Pr = 1 (GenFuzzr), and Gen-
Fuzz without coverage-maximization algorithm (GenFuzz−cm)
on BOOMCore using reg coverage with 256 inputs. 91

4.8 Runtime breakdown of GenFuzz on BoomCore1. 92

5.1 Performance comparison with and without multitasking using
one CPU and one GPU. TaroRTL enables non-blocking GPU
and I/O tasks to improve total runtime. The patterned rectangle
represents the kernel call overhead (GPU and I/O). 97

5.2 CPU waiting and active time growth over increasing numbers
of input stimuli in RTLflow [4]. The relative ratio of wait-
ing time gets smaller as the number of input stimuli increases
because a large number of input stimuli induce a significant
amount of CPU computation for setting inputs. 99

5.3 TaroRTL schedules a task graph using two CPU workers, one
GPU stream, and one I/O buffer. Each worker owns a high-
priority task queue (HPQ) and a low-priority task queue (LPQ)
to prioritize resuming a suspended task over a new task. . . . 102

5.4 A flowchart of our execution control strategy for (a) I/O and (b)
GPU tasks. Gray (Black) blocks represent actions performed
by io_uring (CUDA runtime). 106

xiii

5.5 The time difference between (a) a scheduler without coroutine
and (b) TaroRTL at a specific timeframe. In this example, nc is
2, ng is 1, and tc > tg ·

⌈
nc

ng

⌉
. 109

5.6 The heterogeneous RTL task graph in RTLflow. Each task con-
tains two CPU and GPU subtasks. 110

5.7 Runtime growth over increasing numbers of cycles for TaroRTL
and RTLflow using four and eight threads. 111

5.8 Average CPU utilization rate reported by /usr/bin/time and
runtime decrease over increasing numbers of CPU threads for
TaroRTL and RTLflow on the riscv-mini design. 112

5.9 Achieved speed-up by TaroRTL over Verilator at different num-
bers of input stimuli using eight threads for 3K cycles. 113

5.10 Runtime comparison among Taskflow, Fiber, and TaroRTL for
DC and WF task graphs using eight threads. 115

xiv

abstract

This thesis addresses critical challenges in the realm of parallel and het-
erogeneous computing, with a specific focus on logic simulation, which is
crucial for the design and verification of modern digital systems. As the
complexity of neural networks and hardware designs continues to grow,
traditional computing methods struggle to meet the demands for higher
performance and efficiency. This research aims to develop innovative
solutions to these challenges by leveraging advanced parallel computing
techniques and heterogeneous computing architectures.

1. SNIG: A Novel Inference Algorithm for Large Sparse Neural Network using
Task Graph Parallelism. The increasing size and complexity of deep
neural networks (DNNs) necessitate efficient computation methods.
SNIG addresses this need by introducing an efficient inference engine
for large sparse DNNs, utilizing CUDA Graphs to optimize model and
data parallelism. This work not only enhances inference speed but also
demonstrates significant scalability, crucial for applications in AI and
machine learning where rapid processing of vast amounts of data is
essential.

2. cudaFlow: Efficient GPU Computation using Task Graph Parallelism. As
GPU architectures evolve, the overhead associated with launching in-
dividual GPU operations becomes a bottleneck. cudaFlow presents a
lightweight task graph programming framework that simplifies the use
of CUDA Graphs, enabling efficient GPU computation by automating
the management of stream concurrency and event dependencies. This
advancement is pivotal for developers aiming to maximize GPU utiliza-
tion and improve the performance of GPU-accelerated applications.

3. RTLflow: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus.
The verification of complex hardware designs through RTL simulation is

xv

traditionally time-consuming. RTLflow addresses this by transforming
RTL code into CUDA kernels, leveraging GPU acceleration to process
batch stimuli efficiently. This approach significantly reduces simulation
time, providing a robust solution for the hardware design industry
where faster verification cycles can lead to reduced time-to-market and
increased innovation.

4. GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm with
Multiple Inputs. Hardware fuzzing is essential for detecting vulnerabili-
ties in digital designs. GenFuzz introduces a novel GPU-accelerated
fuzzing technique using a genetic algorithm to handle multiple inputs
simultaneously. This method dramatically improves the speed and
effectiveness of hardware fuzzing, crucial for ensuring the security and
reliability of hardware components.

5. TaroRTL: Accelerating RTL Simulation using Coroutine-based Heterogeneous
Task Graph Scheduling. Building on the success of RTLflow, TaroRTL
incorporates coroutine-based scheduling to further enhance the effi-
ciency of CPU-GPU task management. This technique allows for better
overlap and synchronization of tasks, reducing overall simulation time
and maximizing hardware utilization. Such improvements are vital for
the continued advancement of high-performance computing and the
development of complex digital systems.

In summary, this thesis contributes to the advancement of parallel and het-
erogeneous computing by addressing key bottlenecks in logic simulation
and neural network inference. Through the development of innovative
algorithms and frameworks, this research provides scalable and efficient
solutions that are essential for meeting the demands of modern computa-
tional workloads.

xvi

previous work

The research presented in this thesis builds upon a rich body of previous
work in the fields of neural network inference, GPU computation, RTL
simulation, hardware fuzzing, and task scheduling. Below, we summarize
previous work relevant to each chapter of the thesis.

1. SNIG: A Novel Inference Algorithm for Large Sparse Neural Network using
Task Graph Parallelism. Previous work on large sparse neural network
inference has focused on optimizing sparse matrix operations and im-
proving parallelism in neural network computations [5, 6]. Addition-
ally, the MIT/IEEE/Amazon HPEC Graph Challenge [1] has spurred
innovations in high-performance inference methods for sparse DNNs,
highlighting the need for scalable and efficient algorithms. The BF
method [7] is implemented with CUDA+OpenMP. However, their
load-balancing method requires communication between CPUs and
GPUs at each iteration, resulting in huge overhead. Similar problems
also exist in other pipeline-based frameworks. For example, GPipe [8]
proposes pipelining computation across GPUs and synchronizing data
transfers stage by stage.

2. cudaFlow: Efficient GPU Computation using Task Graph Parallelism. In the
domain of GPU-accelerated computation, substantial progress has been
made in developing frameworks that exploit task graph parallelism. [9]
presents a compiler transformation method that translates OpenMP
code into CUDA graphs. However, their transformation method only
considers explicit graph construction. [10] proposes a compiler-based
approach that combines CUDA graph with an image processing DSL
and a source-to-source compiler called Hipacc. Their kernel pipelining
approach optimizes the schedule specifically for the scattering-pattern
applications. [11] presents the Hybrid Task Graph Scheduler (HTGS)

xvii

to aid in building hybrid workflows for high performance image pro-
cessing.
Graph-based model is extensively studied on CPU-parallel architec-
tures. Just name a few: Taskflow [12, 13, 14, 15, 16, 17] develops a
simple and powerful task programming model enabling efficient im-
plementations of heterogeneous decomposition strategies. Kokkos [18]
uses functional approaches to offer task graph constructions. It enables
applications to achieve performance portability on diverse many-core
architectures. Legion [19] describes a runtime system that dynamically
extracts parallelism from Legion programs, using a distributed, parallel
scheduling algorithm that identifies both independent tasks and nested
parallelism. These models have their own pros and cons, but they do
not target GPU graph parallelism.

3. RTLflow: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus.
RTL simulation has traditionally been a bottleneck in the hardware de-
sign verification process. Verilator [20] has explored RTL partitioning
to support multi-threading. ESSENT [21] is a single-threaded simulator
which introduces an event-driven algorithm using conditional execu-
tion to skip over unnecessary simulation work. ESSENT has shown up
to 2–10× speed-up over single-threaded Verilator but the result does not
scale well to large designs due to the lack of multi-threading. CXXRTL
is a Yosys [22] simulation back-end which transpiles an internal rep-
resentation (IR) generated by the Yosys front-end to C++ simulation
code. However, CXXRTL suffers from extremely long compilation time
on large designs and does not have any multi-threading capability.
GPU-based RTL simulation has been investigated before, but is limited
to a single input stimulus. For instance, [23] offloads the simulation
workload to GPU by mapping each RTL process (a group of simulation
instructions) to a GPU kernel using one thread per warp. This mapping,
however, is not efficient since other threads within a warp are not

xviii

utilized. [24, 25, 26, 27] use GPU to accelerate gate-level simulation.
Nevertheless, gate-level simulation techniques are not suitable for RTL
simulation because of different objectives in design flow.

4. GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm with
Multiple Inputs. Hardware fuzzing has emerged as a promising auto-
matic verification technique to efficiently discover and verify hardware
vulnerabilities. Recent research has explored several approaches to
speed up the single-input, single-threaded, per fuzzing iteration time.
RFUZZ [28] proposes a mux-coverage metric that treats the select signal
of each 2:1 multiplexer as a coverage point. However, RFUZZ cannot
scale to large designs since their runtime grows significantly as the
number of multiplexers increases. DirectFuzz [29] extends RFUZZ
to generate test inputs that maximize the coverage of a specific block.
However, the speedup on complex designs is insignificant (e.g., 1.08×
on the Sodor1Stage RISC-V processor). DIFUZZRTL [30] introduces
a reg-coverage metric to monitor value changes of control registers
connected to mux control signals. While DIFUZZRTL’s reg coverage
shows capability for large designs, their fuzzing technique requires
many hours or days to achieve high coverage. TheHuzz [31] explores
processor states using multiple coverage metrics. However, it induces
significant runtime overhead when collecting coverage data since it
must access multiple metrics per fuzzing iteration. Hw-Fuzzing [32]
converts a hardware-description-language model into an equivalent
software model using Verilator, and performs fuzzing on the software
code using software coverage metrics. However, other hardware cov-
erage metrics such as finite-state-machine (FSM) coverage cannot be
easily added.

5. TaroRTL: Accelerating RTL Simulation using Coroutine-based Heterogeneous
Task Graph Scheduling. Existing RTL simulators have leveraged task
graph parallelism to accelerate simulation on a CPU- and/or GPU-

xix

parallel architecture. Verilator [20], an open-source RTL simulator,
aggregates adjacent logic elements into macro tasks, which are then
scheduled using a static multi-threaded algorithm, achieving optimal
performance with 8-10 CPU cores. RepCut [33] improves upon this
by partitioning circuits into balanced segments with minimal overlap,
reducing synchronization overhead and achieving superlinear speed-
ups through task replication. However, it is restricted to strong scaling
for single input stimuli. RTLflow [4] further innovates by executing
multiple independent input stimuli in parallel on a GPU, utilizing a het-
erogeneous task set and a work-stealing scheduling algorithm. Despite
its advancements, RTLflow encounters significant CPU idle time, as
CPU threads must await the completion of GPU tasks within each sim-
ulation cycle. Taskflow [34] is a task graph scheduling system that has
been adopted by many EDA algorithms [35, 36, 37], including RTLflow.
It develops a simple and powerful task programming model enabling
efficient implementations of heterogeneous decomposition strategies.
However, Taskflow does not support multitasking in a task graph. Lib-
fork [38] is a coroutine-tasking library that is primarily an abstraction
for fully-portable, strict, fork-join parallelism. However, it does not
support heterogeneous parallelism.

1

1 snig: a novel inference algorithm for large
sparse neural network using task graph
parallelism

1.1 Abstract
The ever-increasing size of modern deep neural network (DNN) archi-
tectures has put increasing strain on the hardware needed to implement
them. Sparsified DNNs can greatly reduce memory costs and increase
throughput over standard DNNs, if the loss of accuracy can be adequately
controlled. However, sparse DNNs present unique computational chal-
lenges. Efficient model or data parallelism algorithms are extremely hard
to design and implement. The recent effort MIT/IEEE/Amazon HPEC
Graph Challenge has drawn attention to high-performance inference meth-
ods for large sparse DNNs. In this chapter, we introduce SNIG, an efficient
inference engine for large sparse DNNs. SNIG develops highly optimized
inference kernels and leverages the power of CUDA Graphs to enable effi-
cient decomposition of model and data parallelisms. Our decomposition
strategy is flexible and scalable to different partitions of data volumes,
model sizes, and GPU numbers. We have evaluated SNIG on the offi-
cial benchmarks of HPEC Sparse DNN Challenge and demonstrated its
promising performance scalable from a single GPU to multiple GPUs.
Compared to the champion of the 2019 HPEC Sparse DNN Challenge,
SNIG can finish all inference workloads using only a single GPU. At the
largest DNN, which has more than 4 billion parameters across 1920 layers
each of 65536 neurons, SNIG is up to 2.3× faster than a state-of-the-art
baseline under a machine of 4 GPUs.

2

1.2 Introduction
Larger deep neural network (DNN) models have brought significant qual-
ity improvement to several fields, including natural language processing,
speech recognition, and image classification [39, 40, 41]. To relieve the
increasing strain on the hardware needed to deploy them, much research
over the past decades has focused on the sparsification of DNNs in the
interest of reduced storage and runtime costs [5, 6, 42]. Computing large
sparse DNNs presents unique computational challenges and scaling dif-
ficulties. Sparseness can make the application of the DNN on current
processors extremely inefficient. This inefficiency limits the size of data
to what can be held in GPU memory, or it requires a high-end, expensive
cluster of computers to make up for this inefficiency [43]. Also, sparse
DNN inference presents unique computational challenges from training,
because the kernel efficiency largely depends on non-zero entries that
vary from layer to layer. To address these problems for advancing emerg-
ing sparse machine learning (ML) systems, the 2019 MIT/IEEE/Amazon
HPEC Graph Challenge has developed Sparse DNN Challenge to encour-
age new solutions for sparse DNN inference [1]. Table 1.1 lists the statistics
of each sparse DNN. The largest network contains over 4 billion nonzero
parameters across 1920 layers each of 65536 neurons, adding up to 100 GB
memory storage.

Neurons/Layers 120 480 1920 Bias Size Image Nonzeros
1024 3.9M 15.7M 62.9M -0.30 1.25 GB 6,374,505
4096 15.7M 62.9M 251.7M -0.35 5.40 GB 25,019,051

16384 62.9M 251.7M 1.0B -0.40 22.70 GB 98,858,913
65536 251.7M 1.0B 4.0B -0.45 94.70 GB 392,191,985

Table 1.1: The statistics of each DNN benchmark in the Challenge [1].

The challenge of computing large sparse DNN inference is twofold,
kernel and decomposition algorithms, both of which require strategic designs

3

to benefit from parallelism. Existing kernel algorithms focus on optimiz-
ing sparse matrix-matrix multiplication kernels or carefully maintaining
data sparsity during the weight propagation [44, 45, 46, 47]. However,
most of these approaches require models to sit in the GPU memory, and
they are difficult to operate on partitioned pieces, due to the cost of main-
taining consistent sparse matrix structures between partitions along with
iterations. Existing decomposition strategies divide large data or mod-
els into partitions and distribute partitions across GPUs [48, 49, 50, 51].
Partitioning data and models can both improve parallelism and alleviate
the tension on hardware constraints, including memory limitations and
communication bandwidths on GPUs. However, efficient decomposition
algorithms are extremely hard to design and implement. We need to ad-
dress complexity among GPU capacity, scaling flexibility, and inference
efficiency. To simplify the design, pipeline parallelism has been a popular
choice in existing frameworks [7, 8, 52, 53]. The idea of the pipeline is
simple and easy to implement, but it suffers from many performance prob-
lems, including synchronous execution, imbalanced pipeline stages, and
limited pipeline depth.

As a consequence, we introduce SNIG1, an efficient large sparse DNN
inference engine using task graph parallelism. SNIG develops highly opti-
mized inference kernels that can effectively avoid unnecessary computa-
tion incurred by zero entries during the inference iterations. We leverage
the power of modern CUDA Graph [54, 12] to enable efficient decom-
position of model and data parallelisms. Our decomposition strategy
transforms a partitioned inference workload into a task dependency graph
that flows CPU-GPU operations naturally with the graph structure, provid-
ing improved scheduling efficiency and runtime asynchrony. Compared
with pipeline-based frameworks, SNIG is more flexible and cost-efficient
in fitting together partitioned data and models into different GPUs under

1source code: https://github.com/dian-lun-lin/SNIG

4

hardware constraints. We demonstrate the flexibility and efficiency of
SNIG on the 12 large sparse DNNs provided by the 2019 HPEC Sparse
DNN Challenge [1]. SNIG is able to complete all DNNs using only one
RTX 2080 Ti GPU of 11 GB memory, and we solve the largest DNN by
2.27× faster than the 2019 champion solution developed by Bisson and
Fatica (“BF" method for brevity) [7]. Compared with a pipeline base-
line inspired by GPipe [8], SNIG is faster at almost all networks (up to
2.19× speed-up) and scales better on multiple GPUs. We believe SNIG
stands out as a unique inference engine for large sparse DNNs, given the
ensemble of algorithm tradeoffs and decomposition decisions we have
made.

1.3 Problem Formulation of Large Sparse DNN
Inference

We target on the 2019 HPEC Sparse DNN Challenge, which is based on
a mathematically well-defined DNN inference computation and can be
implemented in any programming environment [1]. The input data, Y0, is
derived from the MNIST handwritten letters by resizing each 28×28 pixel
image to 32×32 (1024 neurons), 64×64 (4096 neurons), 128×128 (16384
neurons), and 256×256 (65536 neurons). The weight matrices of each
sparse DNN, including the bias vectors, are generated by the RadiX-Net
synthetic sparse DNN generator with a number of desirable properties
such that participants can focus on the difficult, computational part of the
problem [55]. The inference problem is to compute Yl+1 = h(YlWl + Bl)

for each layer where h(y) = max(y, 0) is a nonlinear function of rectified
linear unit (ReLU). For the Sparse DNN Challenge, h(y) has an upper
limit set to 32. The surrounding I/O and verification provide the context
for each sparse DNN inference that allows rigorous definition of both the
input and the output. Table 1.1 lists the statistics of each sparse DNN

5

and its input image set. Loading the smallest DNN can take gigabytes of
memory using single-precision floating numbers. Preloading all matrices
to GPUs is impractical and discouraged.

1.4 State of the Art: The BF and Pipeline
Methods

The BF method [7] is implemented with CUDA+OpenMP. Each GPU owns
a part of the input matrix and computes the inference kernel iteratively by
one OpenMP thread. At each iteration, each GPU executes two kernels,
one for the inference and the other for calculating the non-empty row
indices in the resulting matrix. After all GPUs complete execution, the
OpenMP threads compute the new global list of non-empty rows and
repartition the non-empty rows evenly among the GPUs. However, such
a load-balancing method requires communication between CPUs and
GPUs at each iteration, resulting in huge overhead. Also, to compute
the list of non-empty rows, all GPUs need to be synchronized at each
iteration. Synchronization can lead to unnecessary waiting time and waste
computing power of GPUs. Besides, BF requires the entire input data to
sit in GPUs for implementing load balancing. Similar problems also exist
in other pipeline-based frameworks. For example, GPipe [8] proposes
pipelining computation across GPUs and synchronizing data transfers
stage by stage. The efficiency and scalability are largely limited by the size
of partitioned data and available GPU resources that decide the degree of
pipeline parallelism.

1.5 SNIG
At a high level, SNIG describes the inference workload in a task graph com-
prising both data- and model-level parallelisms. Our task graph can scale

6

to arbitrary sizes of DNN and input data under different numbers of GPUs.
We develop an efficient kernel inside the task graph that computes only
necessary entries during the inference iterations. Our in-kernel pruning
strategy avoids unwanted computation incurred by sparsified network and
data, in no need of additional CPU-GPU or GPU-GPU synchronization to
redistribute input data among GPUs.

Task graph parallelism

Figure 1.1: Architecture of SNIG.

Figure 1.1 shows the overview of SNIG. SNIG defines the inference
workload as a task dependency graph that iterates two stages: fetch and
infer. At the fetch stage, a CPU task grabs a batch of input data of up
to size batch_size. Users can tune batch_size based on available GPU
memory. To have multiple threads fetch data at the same time, we use an
atomic counter to represent the remaining size of data. At the infer stage, a
GPU task computes the inference of the batch on a GPU. Each GPU task
consists of a GPU task dependency graph where each node represents one
of the three GPU operations, host-to-device (H2D) copy, device-to-host
(D2H) copy, and kernel tasks; each edge represents the dependency of
two GPU operations. We leverage the power of modern cudaGraph [54]
to offload a GPU task dependency graph using a single CPU call, thus

7

reducing overheads. The architecture of SNIG is decentralized. There is
no local or global CPU-GPU synchronization during the inference on a
dataset.

We transpose weight matrices and store them using the Compressed
Sparse Column (CSC) format. Since preloading all models to the GPU
is impossible due to memory limit, we only keep up to num_weights

weight buffers (W0, W1, ..., Wnum_weights−1) on a GPU at a time. All
weight buffers have the same size equal to the maximum size of Wl. More
weight buffers result in a higher overlap between data communication
and kernel computation. Since the inference at one layer only depends
on the result from the previous layer, we allocate for each GPU two result
buffers Y0 and Y1 each of size batch_size × num_neurons (number of
neurons) to perform rolling swap for space optimization. Each buffer can
be accessed via modulo operation on 2; Inferl%2(l) represents applying
the inference kernel to Wl using Yl%2 as input and Y(l+1)%2 as output.
After completing the inference at the last layer, the GPU identifies the
categories (predicted digits). Users can configure different batch_size
and num_weights based on available GPU memory to fit arbitrary sizes
of models and input data.

Inference kernel

At the infer stage, our inference kernel consists of two parts: forward
feeding and incremental memory resetting. Figure 1.2 illustrates one it-
eration of one row of input data in our kernel. To improve paral-
lelism, we divide each input data into num_secs sections where each
of sec_size is num_neurons/num_secs. Since each GPU keeps Y0 and
Y1 to perform rolling swap, we allocate for each GPU two batch_size×
num_secs boolean buffers, is_nonzero_row0 and is_nonzero_row1, to
record whether a section of data contains nonzero elements. At the begin-
ning of the inference kernel, we inspect each entry in is_nonzero_row0[r].

8

Figure 1.2: Illustration of our inference kernel (Algorithm 1).

If there exists at least one true value, meaning that there is at least one
nonzero element in rth input data, we enter forward feeding. The for-
ward feeding performs matrix multiplication followed by ReLU and passes
the result to the next layer via rolling swap. We skip input section si

(Y0[r][k], sec_size× si ⩽ k < sec_size× (si + 1)) that contains only zero
entries indicated by is_nonzero_row0[r][si] to avoid unnecessary compu-
tation. During the matrix multiplication, we can further skip zero input
entries. Taking advantage of rolling swap, we perform incremental memory
resetting to reset buffers. If all entries in is_nonzero_row0[r] are false, we
reset the output section so (Y1[r][k], sec_size×so ⩽ k < sec_size×(so+1))
including nonzero elements based on is_nonzero_row1[r][so]. This largely
avoids the overhead to reset the entire linear buffer for the next iteration to
use. Our implementation computes each output section so of each data in
parallel and calculates only necessary entries during inference iterations.

Algorithm 1 presents the details of our kernel. The grid dimension
is (batch_size,num_secs) and the block dimension is (2, 512). We allo-
cate 4×sec_size byte of external shared memory. The kernel is launched

9

by <<<(batch_size,num_secs), (2, 512), 4×sec_size>>>. Each block
computes an output section so of one row of input data independently.

At the beginning, each block Blockr,so in the grid determines to execute
either forward feeding or incremental memory resetting. We use is_all_zero
to record if all entries in is_nonzero_row0[r] are false (line 5-8). If
is_all_zero is true, that is, all elements in Y0[r] are zero, Blockr,so en-
ters incremental memory resetting. During incremental memory resetting, if
is_nonzero_row1[r][so] is true, Blockr,so resets all elements of so to zero
and toggles is_nonzeero_row1[r][so] to false (line 10-16). Otherwise, it
returns directly (line 17).

Blockr,so starts forward feeding if is_all_zero is false (line 19-52). Each
block declares a shared memory array results size of sec_size to store
results (line 19) and initializes results to the bias value directly (line 20-
22). To avoid synchronization, we use a boolean array is_nonzero size
of 2 to record whether results has nonzero values (line 23-24, line 49).
Blockr,so iterates all input sections to compute results (line 26). If the
current entry in is_nonzero_row0[r] is false, meaning that the current
input section si contains only zero elements, we skip all elements in si di-
rectly (line 27-29). Otherwise, all threads along y dimension loop through
all entries in si (line 31). We further skip to the next one if the current
input value is zero (line 33-35). All threads along x dimension read col_w
(line 36-37) and iterate the weight values and the weight row indices
(line 38-40). To compute each so independently, we transform the dimen-
sion of each CSC weight matrix from (num_neurons,num_neurons)
to (num_neurons,num_secs× num_neurons). All column indices are
shifted by j = j+num_neurons×(i/sec_size), where (i, j) is the nonzero
index of the weight matrix. In line 36-37, we read column indices of the
weight matrix via adding the offset. Then, we multiply each nonzero input
entry with weight value and add the result to the corresponding location
of results (line 41).

10

After computing results, Blockr,so loops through the results (line
46). It computes ReLU, writes the result to each element in so, and sets
is_nonzero[1] to true if there exists a nonzero result in so (line 47-49).
Finally, we toggle is_nonzero_row1[r][s] to either true or false based on
is_nonzero[1] (line 52).

1.6 Experimental Results
We evaluate SNIG’s performance on the official MIT/IEEE/Amazon HPEC
Sparse DNN Challenge Dataset [1]. All experiments ran on a Ubuntu
Linux 5.0.0-21-generic x86 64-bit machine with 40 Intel Xeon Gold 6138
CPU cores at 2.00 GHz, 4 GeForce RTX 2080 Ti GPUs with 11 GB memory,
and 256 GB RAM. We compiled all programs using Nvidia CUDA nvcc 10.1
on a host compiler of GNU GCC-8.3.0 with C++14 standards -std=c++14
and optimization flags -O2 enabled. All data is an average of ten runs with
float type.

Baseline

We consider BF and GPipe∗ methods for our baseline. The BF method
is the champion solution of the 2019 HPEC Sparse DNN Challenge [7].
We implemented the BF method and its kernel using CUDA streams and
OpenMP. The original BF method relies on NVLink to transparently ex-
change data among GPUs using unified addressing. Since we do not have
NVLink, such a process can be very time-consuming. We manually parti-
tion the input data in the beginning evenly across GPUs and spawn one
OpenMP thread to call the inference function per GPU. We implemented
the GPipe∗ method based on GPipe [8]. GPipe is an iterative framework
for training large DNNs. We extended its idea to inference by partition-
ing the DNN into multiple stages across GPUs and pipelining each data
batch’s execution over these stages using CUDA streams and OpenMP

11

threads. For fair purposes, the inference kernel inside the pipeline is the
same as SNIG. We configure the block dimension of all kernels to 2× 512 ,
the batch size of input data to 5000 for SNIG and GPipe∗, , and the number
of weight buffers to 2 for SNIG . We will discuss the effect of different
parameters in the later section.

12

Algorithm 1: Inference kernel
Input: col_w: array of column offsets of the weight matrix
Input: row_w: array of row indices
Input: val_w: array of values

1 r← block.x
2 so ← block.y
3 tid← thread.y * blockDim.x + thread.x
4 num_threads← blockDim.x * blockDim.y
5 is_all_zero← true
6 for si ← 0; si < num_secs; ++si do
7 is_all_zero &= !is_nonzero_row0[r][si]
8 end
9 if is_all_zero == true then

10 if is_nonzero_row1[r][so] == true then
11 for j← tid; j < sec_size; j += num_threads do
12 Y1[r][sec_size * so + j] = 0
13 end
14 __syncthreads()
15 is_nonzero_row1[r][so]← false
16 end
17 return
18 end
19 extern __shared__ results[]
20 for k← tid; k < sec_size; k += num_threads do
21 results[k]← bias
22 end
23 __shared__ is_nonzero[2]
24 is_nonzero[1]← false
25 __syncthreads()
26 for si ← 0; si < num_secs; ++si do
27 if !is_nonzero_row0[r][si] then
28 continue
29 end
30 j← thread.y + si ∗ sec_size
31 for j; j < (si + 1) * sec_size; j += blockDim.y do
32 yval ← Y0[r][j]
33 if yval == 0 then
34 continue
35 end
36 w− ← col_w[so * num_nurons + j] + thread.x
37 w+ ← col_w[so * num_neurons + j + 1]
38 for k← w−; k < w+; k += blockDim.x do
39 wrow ← row_w[k]

40 wval ← val_w[k]

41 atomicAdd(&results[wrow - so * sec_size], yval * wval)
42 end
43 end
44 end
45 __syncthreads()
46 for i← tid; i < sec_size; i += num_threads do
47 v←min(32, max(results[i], 0))
48 Y1[r][so * sec_size + i]← v
49 is_nonzero[v ̸= 0]← true
50 end
51 __syncthreads()
52 is_nonzero_row1[r][so] = is_nonzero[1]

13

Nu
m

be
ro

fG
PU

s
1

2
3

4
Ne

ur
on

s
La

ye
rs

BF
SN

IG
BF

GP
ip

e∗
SN

IG
BF

GP
ip

e∗
SN

IG
BF

GP
ip

e∗
SN

IG
12

0
34

5.
93

29
5.2

8
57

6.8
4

58
9.

82
45

5.4
6

76
1.

06
69

5.9
5

68
9.8

5
86

7.3
8

76
8.5

0
12

48
.3

0
(0

.68
2s

)
(0

.79
9s

)
(0

.40
9s

)
(0

.40
0s

)
(0

.51
8s

)
(0

.31
0s

)
(0

.33
9s

)
(0

.34
2s

)
(0

.27
2s

)
(0

.30
7s

)
(0

.18
9s

)
10

24
48

0
47

7.8
3

58
6.

52
80

1.1
1

10
16

.9
3

92
6.1

2
10

61
.55

12
73

.57
13

48
.1

6
11

12
.87

14
83

.83
19

82
.6

0
(1

.97
5s

)
(1

.60
9s

)
(1

.17
8s

)
(0

.92
8s

)
(1

.01
9s

)
(0

.88
9s

)
(0

.74
1s

)
(0

.70
0s

)
(0

.84
8s

)
(0

.63
6s

)
(0

.47
6s

)
19

20
52

4.5
0

71
8.

74
85

2.5
0

11
87

.8
1

11
84

.45
11

33
.59

15
75

.48
16

47
.6

9
12

20
.45

18
76

.17
21

59
.5

3
(7

.19
7s

)
(5

.25
2s

)
(4

.42
8s

)
(3

.17
8s

)
(3

.18
7s

)
(3

.33
0s

)
(2

.39
6s

)
(2

.29
1s

)
(3

.09
3s

)
(2

.01
2s

)
(1

.74
8s

)
12

0
40

9.4
2

58
6.

52
74

6.0
2

93
4.3

7
98

0.
99

11
06

.35
10

53
.25

14
60

.8
6

13
85

.78
11

65
.08

22
41

.6
1

(2
.30

5s
)

(1
.60

9s
)

(1
.26

5s
)

(1
.01

0s
)

(0
.96

2s
)

(0
.85

3s
)

(0
.89

6s
)

(0
.64

6s
)

(0
.68

1s
)

(0
.81

0s
)

(0
.42

1s
)

40
96

48
0

54
4.5

5
80

3.
84

96
2.7

3
13

76
.68

14
00

.6
9

14
31

.50
17

67
.26

20
62

.7
7

17
43

.59
20

69
.5

27
61

.4
2

(6
.93

2s
)

(4
.69

6s
)

(3
.92

1s
)

(2
.74

2s
)

(2
.69

5s
)

(2
.63

7s
)

(2
.13

6s
)

(1
.83

0s
)

(2
.16

5s
)

(1
.82

4s
)

(1
.36

7s
)

19
20

58
6.3

8
86

7.
28

10
32

.09
15

51
.53

15
75

.4
8

15
38

.09
20

74
.67

22
84

.3
4

18
79

.21
25

06
.97

29
48

.5
4

(2
5.7

5s
)

(1
7.4

1s
)

(1
4.6

3s
)

(9
.73

2s
)

(9
.58

4s
)

(9
.81

7s
)

(7
.27

8s
)

(6
.61

0s
)

(8
.03

5s
)

(6
.02

3s
)

(5
.12

1s
)

12
0

46
2.3

2
85

1.
53

88
1.3

6
12

90
.55

14
87

.3
4

13
03

.47
15

21
.51

21
83

.2
6

16
21

.50
16

84
.45

29
14

.9
6

(8
.16

5s
)

(4
.43

3s
)

(4
.28

3s
)

(2
.92

5s
)

(2
.53

8s
)

(2
.89

6s
)

(2
.48

1s
)

(1
.72

9s
)

(2
.32

8s
)

(2
.24

1s
)

(1
.29

5s
)

16
38

4
48

0
61

6.3
0

10
76

.9
9

11
37

.01
18

87
.67

19
65

.3
1

16
78

.28
24

54
.80

28
24

.4
4

20
72

.39
28

94
.28

37
36

.5
7

(2
4.5

0s
)

(1
4.0

2s
)

(1
3.2

8s
)

(7
.99

9s
)

(7
.68

3s
)

(8
.99

7s
)

(6
.15

1s
)

(5
.34

6s
)

(7
.28

6s
)

(5
.21

7s
)

(4
.04

1s
)

19
20

66
3.3

4
11

13
.9

4
12

07
.71

21
05

.92
21

27
.4

3
18

08
.86

28
17

.06
30

22
.9

2
22

30
.35

34
12

.31
39

63
.1

2
(9

1.0
5s

)
(5

4.2
2s

)
(5

0.0
1s

)
(2

8.6
8s

)
(2

8.3
9s

)
(3

3.3
9s

)
(2

1.4
4s

)
(1

9.9
8s

)
(2

7.0
8s

)
(1

7.7
0s

)
(1

5.2
4s

)
12

0
28

.79
10

21
.6

1
57

.52
13

23
.35

18
70

.3
6

13
32

.70
14

86
.17

27
05

.5
1

16
52

.74
15

65
.85

34
36

.3
8

(5
24

.3s
)

(1
4.7

8s
)

(2
62

.5s
)

(1
1.4

1s
)

(8
.07

3s
)

(1
1.3

3s
)

(1
0.1

6s
)

(5
.58

1s
)

(9
.13

6s
)

(9
.64

3s
)

(4
.39

4s
)

65
53

6
48

0
14

04
.6

0
58

.81
20

83
.40

25
83

.3
1

18
17

.57
27

68
.00

37
84

.3
3

22
41

.94
32

22
.94

50
71

.1
9

(>
18

00
s)

(4
3.0

0s
)

(1
02

7s
)

(2
8.9

9s
)

(2
3.3

8s
)

(3
3.2

3s
)

(2
1.8

2s
)

(1
5.9

6s
)

(2
6.9

4s
)

(1
8.7

4s
)

(1
1.9

1s
)

19
20

14
89

.4
6

15
01

.50
28

10
.5

1
19

60
.97

19
48

.32
41

49
.6

3
24

50
.47

27
84

.27
55

61
.5

0
(>

18
00

s)
(1

62
.2s

)
(>

18
00

s)
(1

60
.9s

)
(8

5.9
6s

)
(1

23
.2s

)
(1

24
.0s

)
(5

8.2
2s

)
(9

8.5
9s

)
(8

6.7
7s

)
(4

3.4
4s

)

Ta
bl

e1
.2:

Ov
er

all
in

fer
en

ce
ra

te
(g

iga
ed

ge
sp

ro
ce

ss
ed

pe
rs

ec
on

d)
an

d
ru

nt
im

ep
er

fo
rm

an
ce

(s
ec

on
ds

)o
f

SN
IG

,B
F,

an
d

GP
ip

e∗
ac

ro
ss

on
e,

tw
o,

th
re

e,
an

d
fo

ur
GP

Us
.B

ol
d

tex
tr

ep
re

se
nt

st
he

be
st

so
lu

tio
n

in
th

e
co

rre
sp

on
di

ng
be

nc
hm

ar
k.

14

Performance Comparison

Table 1.2 compares the overall inference rate and runtime performance
between SNIG, BF, and GPipe∗ using one, two, three, and four GPUs. All
results match the golden reference provided by the MIT/IEEE/Amazon
Sparse DNN Challenge [1]. Since the GPipe∗ method is staged on the
number of GPUs, we do not report its runtime under one GPU. The result
of BF method is different from BF paper due to different GPU platforms.
SNIG outperforms BF and GPipe∗ across nearly all benchmarks. With 4
GPUs, SNIG is 2.3× faster than BF on the largest DNN of 65536 neurons
and 1920 layers and is 2.2× faster than GPipe∗ on the DNN of 65536
neurons and 120 layers. The BF method failed to finish the largest DNN
of 65536 neurons and 1920 layers within a reasonable amount of time
(> 1800 seconds) under one and two GPUs. This is because BF requires
the entire input data to sit in the GPU under unified memory addressing
to implement load balancing. CUDA will keep fetching in and out data
between CPUs and GPUs if partitioned data does not fit in a GPU’s memory.
Its kernel design is architecturally constrained by the number of GPUs
and available memory. Similar problems exist in the GPipe∗ method as
well since GPipe∗ requires the entire model to sit in GPUs. We observe
long runtime of GPipe∗ to complete the DNNs of 65536 neurons and 1920
layers.

Figure 1.3 plots the scalability over increasing number of GPUs. Our
runtime scales the best among the three methods. In the 16384×1920
scenario, SNIG speeds up BF by 1.7×, 1.8× , 1.7×, and 1.8× at 1, 2, 3, and 4
GPUs, respectively. In the 65536×1920 scenario, SNIG speeds up GPipe∗ by
1.9×, 2.1× , 2.0× at 2, 3, and 4 GPUs, respectively. We attribute this to the
synchronization overhead of both methods (BF at each iteration, GPipe∗ at
each pipeline stage). Figure 1.4 plots the scalability over increasing number
of neurons. SNIG outperforms BF and GPipe∗ in all scenarios. The growth
rate of our runtime is much slower than BF and GPipe∗, due to our in-

15

1 2 3 4
5

10

15

20

25

#GPUs

Ti
m

e(
s)

4096×1920

SNIG
BF

1 2 3 4

20

40

60

80

#GPUs

Ti
m

e(
s)

16384×1920

SNIG
BF

2 3 4

15

20

25

30

#GPUs

Ti
m

e(
s)

65536×480

SNIG
GPipe∗

2 3 4

50

100

150

#GPUs

Ti
m

e(
s)

65536×1920

SNIG
GPipe∗

Figure 1.3: Execution time with different numbers of GPUs.

0 2 4 6
·104

0

10

20

#Neurons

Ti
m

e(
s)

480 layers
SNIG

BF

0 2 4 6
·104

0

20

40

60

80

100

#Neurons

Ti
m

e(
s)

1920 layers
SNIG

BF

0 2 4 6
·104

0

5

10

15

20

#Neurons

Ti
m

e(
s)

480 layers
SNIG

GPipe∗

0 2 4 6
·104

0

20

40

60

80

#Neurons

Ti
m

e(
s)

1920 layers
SNIG

GPipe∗

Figure 1.4: Execution time with different neurons under 4 GPUs.

16

kernel pruning strategy and task parallelism. Figure 1.5 illustrates the
peak GPU memory usage of each method. Both SNIG and BF demand less
memory than GPipe∗ because of buffered rolling swap, whereas GPipe∗

stages the model across GPUs. Our memory is fewer than BF due to
batched input data.

0 2 4 6
·104

0

0.2

0.4

0.6

0.8

1

1.2
·104

#Neurons

M
em

or
yu

sa
ge

(M
B)

480

SNIG
GPipe∗

BF
0 2 4 6

·104

0

0.2

0.4

0.6

0.8

1

1.2
·104

#Neurons

M
em

or
yu

sa
ge

(M
B)

1920

SNIG
GPipe∗

BF

Figure 1.5: Peak GPU memory usage under 4 GPUs.

Figure 1.6: Execution timeline of each method on completing 65536 neu-
rons and 1920 layers under 4 GPUs.

Figure 1.6 plots a partial GPU execution timeline of each method using
the data extracted from NVIDIA Visual Profiler [56] under the same time
scale. Since SNIG and BF do not pipeline the model across GPUs, both
methods require weight copy during the inference iterations. However, the
time for data transfers is largely overlapped with the kernel computation
(i.e., task parallelism in SNIG and stream parallelism in BF). In SNIG,
each GPU performs the inference on a data batch independently, and thus
the runtime of each GPU is different. The execution timeline of GPipe∗ at

17

each GPU is more fragmented and discontinued than SNIG and BF. This
is because computation and GPU-to-GPU data transfers at each pipeline
level need to synchronize before moving to the next stage. For example,
we can clearly see several white spaces between successive GPU operations
at GPU 1 and GPU 2.

Parameter Sensitivity

1 2 4 8 16

2

2.5

3

3.5

4

dim_x

Ti
m

e(
s)

1024

SNIG
GPipe∗

BF
1 2 4 8 16

6

8

10

12

dim_x

Ti
m

e(
s)

4096
SNIG

GPipe∗
BF

1 2 4 8 16

20

30

40

50

dim_x
Ti

m
e(

s)

16384
SNIG

GPipe∗
BF

1 2 4 8 16

50

100

150

200

dim_x

Ti
m

e(
s)

65536
SNIG

GPipe∗
BF

Figure 1.7: Execution time with different block dimensions
(dim_x,dim_y) on 1920 layers under 4 GPUs. The total number
of threads dim_x× dim_y remains 1024.

Figure 1.7 shows the impact of different block dimensions. All im-
plementations have the same trend and perform better at lower dim_x,
especially under a large number of neurons. All kernels read input data
along y dimension and iteratively access weights along x dimension. Since
weights are sparse matrices, the overhead is dominated by reading in-
put data. Figure 1.8 shows the impact of different input batch sizes in

18

0 0.5 1 1.5 2
·104

2

3

4

5

batch size

Ti
m

e(
s)

1024
SNIG

GPipe∗

0 0.5 1 1.5 2
·104

4

6

8

10

12

14

batch size
Ti

m
e(

s)

4096
SNIG

GPipe∗

0 0.5 1 1.5 2
·104

15

20

25

30

batch size

Ti
m

e(
s)

16384
SNIG

GPipe∗

0 0.5 1 1.5 2
·104

40

60

80

100

120

140

batch size

Ti
m

e(
s)

65536
SNIG

Gpipe∗

Figure 1.8: Execution time with different batch sizes on 1920 layers under
4 GPUs.

SNIG and GPipe∗. Partitioning input data with too small batch size results
in a lousy performance, while a bigger batch size doesn’t gain speedup.
GPipe∗ has a higher growth rate of runtime than SNIG. We attribute this
to the architecture of GPipe∗ and GPU memory limitation. Since GPipe∗

pipelines computation across GPUs, large input batch size of large DNNs
causes long CPU-GPU and GPU-GPU data communication times. SNIG
does not require any GPU-GPU data transfers.

1.7 Conclusion
In this chapter, we have introduced SNIG, an efficient inference engine
for large sparse DNNs. We have described the inference workload in a
task graph comprising both data- and model-level parallelisms. Our de-
composition method can scale to arbitrary sizes of DNN and input data

19

under different numbers of GPUs. Our in-kernel pruning strategy avoids
unwanted computation incurred by sparsified network and data, in no
need of additional CPU-GPU synchronization to repartition data. With
4 GPUs, SNIG is 2.3× faster than BF and is 2.0× faster than GPipe∗ on
the largest DNN of 65536 neurons and 1920 layers (more than 4 billion
nonzero parameters). In this work, Dian-Lun Lin was the primary contrib-
utor, responsible for the majority of the research and development efforts.
Tsung-Wei Huang supervised the research, providing guidance and over-
sight throughout the project. All authors contributed to the preparation
and review of the final manuscript.

20

2 cudaflow: efficient gpu computation using
task graph parallelism

2.1 Abstract
Recently, CUDA introduces a new task graph programming model, CUDA
graph, to enable efficient launch and execution of GPU work. Users describe
a GPU workload in a task graph rather than aggregated GPU operations,
allowing the CUDA runtime to perform whole-graph optimization and
significantly reduce the kernel call overheads. However, programming
CUDA graphs is extremely challenging. Users need to explicitly construct
a graph with verbose parameter settings or implicitly capture a graph
that requires complex dependency and concurrency managements using
streams and events. To overcome this challenge, we introduce a lightweight
task graph programming framework to enable efficient GPU computa-
tion using CUDA graph. Users can focus on high-level development of
dependent GPU operations, while leaving all the intricate managements
of stream concurrency and event dependency to our optimization algo-
rithm. We have evaluated our framework and demonstrated its promising
performance on both micro-benchmarks and a large-scale machine learn-
ing workload. The result also shows that our optimization algorithm
achieves very comparable performance to an optimally-constructed graph
and consumes much less GPU resource.

2.2 Introduction
The performance of GPU architectures continues to increase with every
new generation. Modern GPUs are fast and, in many scenarios, the time
taken by each GPU operation (e.g., kernel or memory copy) is now mea-
sured in microseconds. The overheads associated with the submission of

21

each operation to the GPU, also at the microsecond scale, are becoming
significant and can dominate the performance of a GPU algorithm. For
instance, inferencing a large neural network launches many dependent
kernels on partitioned data and models. If each of these operations is
launched to the GPU separately and repetitively, the overheads can com-
bine to form a significant overall degradation to performance. To address
this issue, CUDA has recently introduced a new CUDA graph program-
ming model to enable efficient launch and execution of GPU work. CUDA
graph enables a define-once-run-repeatedly execution flow that reduces
the overhead of kernel launching. Users describe dependent GPU opera-
tions in a task graph rather than aggregated single operations. The CUDA
runtime can perform whole-graph optimization and launch the entire
graph in a single CPU operation to reduce overheads [57, 58].

However, programming CUDA graphs is extremely challenging. First,
users can explicitly construct a CUDA graph that maps each vertex to a GPU
operation and each edge to a dependency between two GPU operations.
Explicit CUDA graph construction is often the most efficient, but it requires
all the parameters known upfront, which is impossible for many high-
performance third-party libraries, such as cuSparse, cuBLAS, and cuDNN.
Also, the CUDA runtime maximally parallelizes the given CUDA graph
without limiting the stream usage. In large graphs, the GPU memory can
explode. The second option is implicit graph construction, which captures
a CUDA graph using existing stream-based application programming
interfaces (APIs). Implicit CUDA graph construction is more flexible and
general, allowing users to manually allocate and control streams. However,
it requires users to wrangle with concurrency details through events and
streams that are known difficult to program correctly.

Consequently, we propose in this chapter a lightweight task graph pro-
gramming framework to enable efficient GPU computation using CUDA
graph. Our framework introduces an expressive GPU task graph program-

22

ming model for users to focus on high-level development of dependent
GPU operations with relatively ease of programming. A written task
graph is then cast to a native CUDA graph through our transformation
algorithm optimized for kernel concurrency and graph size. The process
is transparent. Users need not to handle any intricate concurrency details
and dependency controls using streams and events. More importantly, we
identify a research problem of optimizing CUDA graphs through stream
capturers. The proposed research can assist CUDA developers in improv-
ing the performance of existing GPU applications through new CUDA
graph parallelism.

2.3 The Proposed GPU Task Graph
Programming Model

Our GPU task graph programming model consists of two parts, cudaFlow
and cudaFlowCapturer, to handle explicit and implicit graph constructions
in different use cases.

cudaFlow: Explicit CUDA Graph Construction

!"#

$%&

&%$

!"%

'# '% ()**+)('

Figure 2.1: An example of
GPU task graph.

cudaFlow provides methods for users to
explicitly construct a GPU task graph that
presents a one-to-one mapping to a native
CUDA graph. Each node in the task graph
represents a GPU operation (copy, kernel,
etc.), and each edge represents a depen-
dency between two operations. Figure 2.1
shows a GPU task graph of seven nodes
(two kernels, k1 and k2, two typed copies,

h2d and d2h, two untyped copies, ms1 and ms2, and one host callback,

23

callback) and six dependencies (e.g., k1→k2). Listing 2.1 gives the im-
plementation of Figure 2.1 using our model. We create a cudaFlow object
(cf) and use the four methods, kernel, memset, copy, and host, to cre-
ate the seven task graph nodes and use the two methods, succeed and
precede, to relate dependencies between nodes. The code explains itself
through an expressive graph description language in just 12 lines of code.
The same example but written in the plain CUDA graph model is partially
shown in Listing 2.2, which requires more than 150 lines of code.

cudaFlow cf;
cudaTask h2d = cf.copy(inputVec_d, inputVec_h, inputSize);
cudaTask ms1 = cf.memset(outputVec_d, 0, input_size);
cudaTask ms2 = cf.memset(result_d, 0, 1);
cudaTask k1 = cf.kernel(reduce, inputVec_d, outputVec_d, inputSize);
cudaTask k2 = cf.kernel(reduce_final, outputVec_d, result_d);
cudaTask d2h = cf.copy(result_h, result_d, 1);
cudaTask callback = cf.host(fn, &hostFnData);
k1.succeed(h2d, ms1);
k2.succeed(k1, ms2);
k2.precede(d2h);
d2h.precede(callback);

Listing 2.1: Example code of Figure 2.1 using cudaFlow.

cudaStream_t streamForGraph;
cudaGraph_t graph;
std::vector<cudaGraphNode_t> nodeDependencies;
cudaGraphNode_t memcpyNode, kernelNode, memsetNode;
checkCudaErrors(cudaStreamCreate(&streamForGraph));
cudaKernelNodeParams kernelNodeParams = {0};
cudaMemcpy3DParms memcpyParams = {0};
cudaMemsetParams memsetParams = {0};
memcpyParams.srcArray = NULL;
memcpyParams.srcPos = make_cudaPos(0, 0, 0);

24

memcpyParams.srcPtr =
make_cudaPitchedPtr(inputVec_h, sizeof(float) ∗ inputSize, inputSize, 1);

memcpyParams.dstArray = NULL;
memcpyParams.dstPos = make_cudaPos(0, 0, 0);
memcpyParams.dstPtr =

make_cudaPitchedPtr(inputVec_d, sizeof(float) ∗ inputSize, inputSize, 1);
memcpyParams.extent = make_cudaExtent(sizeof(float) ∗ inputSize, 1, 1);
memcpyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaGraphCreate(&graph, 0));
checkCudaErrors(

cudaGraphAddMemcpyNode(&memcpyN, graph, NULL, 0, &memcpyP
));
//... more than 100 lines of code to follow

Listing 2.2: Example code of Figure 2.1 using the plain CUDA graph.

cudaFlowCapturer: Implicit CUDA Graph Construction

cudaFlow allows users to explicitly construct a CUDA graph, but it requires
all execution parameters known in advance. This property restricts users
from using commercial CUDA libraries, such as cuDNN and cuBLAS, that
do not provide details for launching kernels but a public stream-based
API. To overcome this restriction, we introduce cudaFlowCapturer with
a stream-based method to capture GPU kernels and transform the given
task graph into a native CUDA graph using our graph transformation
algorithm. Listing 2.3 shows the cudaFlowCapturer code of Figure 2.1,
assuming the two kernels, k1 and k2, are only invokable through a stream-
based API. The cudaFlowCapture provides a method, on, that passes a
stream created by our optimizer to the callable for users to capturer kernels
or other asynchronous GPU operations.

cudaFlowCapturer cap;
cudaTask h2d = cap.copy(inputVec_d, inputVec_h, inputSize);

25

cudaTask ms1 = cap.memset(outputVec_d, 0, input_size);
cudaTask ms2 = cap.memset(result_d, 0, 1);
cudaTask k1 = cap.on([&](cudaStream_t stream){

cublas_gemm(stream, my_paremeters...);
});
cudaTask k2 = cap.on([&](cudaStream_t stream){

cublas_gemv(stream, my_paremeters...);
});
cudaTask d2h = cap.copy(result_h, result_d, 1);
cudaTask callback = cf.host(fn, &hostFnData);
k1.succeed(h2d, ms1);
k2.succeed(k1, ms2);
k2.precede(d2h);
d2h.precede(callback);

Listing 2.3: Example code of Figure 2.1 using cudaFlowCapturer.

2.4 Transform a cudaFlowCapturer to a CUDA
Graph

By default, we translate a cudaFlow directly into a native CUDA graph and
use a single CPU call to offload the graph. To launch a cudaFlowCapturer,
we need to transform the task graph defined in the cudaFlowCapturer
into a native CUDA graph using stream capturer.

Problem Formulation

We describe the transformation problem as follows: Given a task graph
Gt and the number of streams (num_streams), discover an order to
construct dependencies between nodes, i.e., assign each node n ∈ Gt

to a stream and decide an event for each node such that the execution

26

!

!!

"#!#$% & ' (

$)*+%&

&

'

(

&

'

!",$)*+%!"-.%)/*#0%12%)2.%$#!#$

'
!#

!$

!%

!&

!'

!(

!! !# !&!$!% !'

!(

!# !'

345

!$

!!

!%

!(

365315

!&

"!

"#

"!

"#

Figure 2.2: Transformation of a task graph to a CUDA graph using two
streams.

order of tasks (“transformed CUDA graph”) imposed by the streams and
events is topologically identical to the original task graph. The objective is
to balance the load of each stream and minimize the transformed graph
size. For example, using two streams, the task graph in Figure 2.2(a)
can be transformed into two different CUDA graphs, (b) and (c), both
resulting in different critical paths and graph sizes. CUDA stream is in-
order. Placing two dependent nodes at two different streams may require
creating an event to build a dependency in the CUDA graph, as shown in
the red points. Since the optimal number of streams is highly dependent
on application level, we leave num_streams to users to tune the number
of streams based on their applications.

This transformation problem has two challenges: Firstly, CUDA stream
capture is stateful [59]. We can only construct a dependency in one direction
from an assigned node to the node that is being enqueued to a stream.
That is, optimizing the event count and, hence, the graph size, through
back-and-forth traversal is not possible. Second, graph size matters. The
same task graph can have many feasible transformations (see Figure 2.2).
Different transformations result in different execution efficiencies.

27

Our Algorithm: Round Robin with Dependency Pruning

At a high level, our algorithm assigns each node to a stream in a round-
robin fashion and applies a dependency pruning to reduce redundant
dependencies. We use Figure 2.3 to illustrate our algorithm transforming
the task graph of Figure 2.2(a) to a CUDA graph using two streams. First,
we levelize the task graph, Gt, to a 2D level list. Based on the 2D level list,
we assign each node ni to indicate the index of the topological ordering
of Gt, and ni.lid to indicate the index of its level (see Figure 2.2(a)). We
assign each node to a stream of id equal to (ni.lid+1)%num_streams+1
as a result of the round-robin. For example, n4 is assigned to stream
s2 (i.e., (2 + 1)%2 + 1). Assigning nodes in a round-robin manner at
each level facilitates load balancing because nodes are evenly distributed
across streams. The motivation of levelization is to implicitly capture
dependencies between levels using the same stream. For instance, the
dependency between n1 and n3 is implicitly captured by s1.

We iterate each node level by level to perform three steps: construct
dependencies, assign stream, and decide an event. At the first level, since n1
does not have predecessors, we assign it to s1 (Figure 2.3(a)). We then
check if any of n1’s successors (n3,n4,n5) will be assigned to the different
stream, s2. Since n4 will be assigned to s2, we need to create an event
for n1 so that the later iteration can wait on it to create a dependency
edge (Figure 2.3(b)). At the second level, since n3 is assigned to the same
stream as its predecessor, n1, we do not create a dependency from n3 to
n1; but, we create an event for n3 because its successor n7 will be assigned
to s2, as shown in Figure 2.3(c). Figure 2.3(d) and (e) show the process of
n4. Since n4 is assigned to the different stream from it’s predecessor, n1,
we need to create a dependency before assigning n4 to s2 by waiting on
n1’s event. The same procedure continues until we iterate all nodes. Our
dependency pruning happens at assigning n7 to s2 (Figure 2.3(g) and (h)).
n7’s predecessors, n3 and n5, are both assigned to s1. We only construct a

28

!!"!

""

!!

!"!#$%&

!! !#

!"

!! !#

!"

"!

""

!! !# !$!%

!" !&

'() '*) '+)

',) '-)

!! !#

!" !&

'!)

!! !# !$!%

!" !&

'.)

"!

""

!! !# !$!%

!" !& !'

'/)

!!

!"

!#

!&

!$!%

!'

'0)

Figure 2.3: Illustration of our algorithm on Figure 2.2 using two streams.

dependency from n5 to n7 since n5 is guaranteed to be executed after n3 in
the same stream, s1. This pruning reduces redundant dependencies. The
transformed CUDA graph from this assignment is shown in Figure 2.3(i).

Algorithm 2 presents the details of our algorithm. We iterate all nodes
at each level to perform the three tasks: construct dependencies, assign stream,
and decide an event. For simplicity, n.idx represents ni’s index, i.

construct dependencies (lines 6-19): We construct dependencies from
n’s predecessor, pred, to n. Since n’s predecessors may be assigned to
the same stream that implicitly capturers sequential order of enqueued
nodes, we only need to construct a dependency from the last assigned
predecessor, last_assign, to n and prune the other dependencies starting
from n’s predecessors that is assigned to the same stream.

assign stream (line 20) & decide an event (lines 21-30): We assign

29

n to ssid, where sid is the id of the stream assigned to n. We decide an
event by checking whether n is assigned to a different stream from one
of its successors, suc. If true, we create and record an event for n so that
suc can construct a dependency from n to suc at the later iteration. We
further assign suc.sm to ssid for dependency pruning that happened in
the later construct dependencies stage.

2.5 Experimental Results
We evaluate the performance of cudaFlow and cudaFlowCapturer on (1)
five micro-benchmarks1 that are representative for many GPU algorithm
patterns, and (2) a large-scale machine learning workload directly de-
rived from the 2020 champion of the HPEC Sparse Deep Neural Network
(DNN) Inference Challenge [2]. Both cudaFlow and cudaFlowCapturer
have different use cases that complement each other. The purpose of our
experiment is not to demonstrate which one outperforms another but
to highlight that our transformation algorithm can achieve comparable
performance (or even better) to the optimally-constructed CUDA graph
when explicit graph construction is not possible. By default, we transform
a cudaFlow into a CUDA graph of the same topology because all kernel
execution parameters are known up-front. In cudaFlowCapturer, we use
RR1, RR2, RR4, and RR8 to represent our algorithm using 1, 2, 4, and 8
streams in the round-robin loop, respectively. To demonstrate the effective-
ness of our dependency pruning, RR4− and RR8− represent our algorithm
without dependency pruning under 4 and 8 streams. We do not report
RR1− and RR2− because redundant dependencies only occur between
nodes that are assigned to different streams. Using one or two streams
creates few redundant dependencies. All experiments ran on a Ubuntu
Linux 5.0.0-21-generic x86 64-bit machine with 40 Intel Xeon Gold 6138

1source code: https://github.com/dian-lun-lin/cudaFlow-benchmarks

30

Algorithm 2: Round Robin with Dependency Pruning.
Input: num_streams: number of streams
Input: graph: task graph defined by users
/* create streams... */

1 levelized← levelize(graph)
2 for each_level_graph in levelized do
3 for n in each_level_graph do
4 sid← (n.lid+ 1)%num_streams+ 1
5 last_assign← null
6 for pred in n.predecessors do
7 psid← (pred.lid+ 1)%num_streams+ 1
8 if spsid == n.sm then
9 if last_assign == null or last_assign.idx < pred.idx

then
10 last_assign = pred

11 end
12 end
13 else if spsid != ssid then
14 cudaStreamWaitEvent(ssid, pred.event)
15 end
16 end
17 if last_assign != null then
18 cudaStreamWaitEvent(ssid, last_assign.event)
19 end
20 n.assign(ssid)
21 for suc in n.successors do
22 ssid = (suc.lid+ 1)%num_streams+ 1
23 if sssid != ssid then
24 if n.event == null then
25 cudaCreateEvent(n.event)
26 cudaEventRecord(n.event, ssid)
27 end
28 suc.sm← ssid
29 end
30 end
31 end
32 end

31

CPU cores at 2.00 GHz, one GeForce RTX 2080 Ti GPU with 11 GB memory,
and 256 GB RAM. We compiled all programs using Nvidia CUDA nvcc
11.1 on a host compiler of GNU GCC-9.2.1 with C++17 standards and
optimization flags -O2 enabled. All data is an average of ten runs.

Micro-benchmarks

We consider five common GPU task graphs as our micro-benchmarks: lin-
ear chain (LC), embarrassing parallelism (EP), map-reduce (MR), divide
and conquer (DC), and random DAG. LC task graph defines a sequence
of sequentially dependent nodes. EP task graph defines only independent
nodes. MR task graph defines several iterations each of 16 mappers and
one reducer. DC task graph defines a complete binary tree. Random
DAG defines a more generalized task graph; we randomly generate up
to 50 nodes at each level and create at most five edges per node between
successive levels. For all benchmarks, each node contains three sequen-
tial GPU operations: host-to-device (H2D) copy, reduction kernel, and
device-to-host (D2H) copy. H2D operation first copies 220 integers from
CPU to GPU, the reduction kernel performs parallel sum reduction on all
elements, and D2H operation copies the reduced sum from GPU to CPU.
We focus on large GPU work where the effect of task graph parallelism is
significant.

32

Ta
sk

gr
ap

h
cu

da
Fl

ow
cu

da
Fl

ow
Ca

pt
ur

er
RR

1
RR

2
RR

4
RR

4−
RR

8
RR

8−

Li
ne

ar
Ch

ain
(6

55
36

no
de

s)
39

32
15

39
32

15
39

32
15

39
32

15
39

32
15

39
32

15
39

32
15

Em
ba

rra
ss

in
gP

ar
all

eli
sm

(6
55

36
no

de
s)

32
76

80
39

32
15

39
32

14
39

32
12

39
32

12
39

32
08

39
32

08
Di

vi
de

an
d

Co
nq

ue
r(

16
lev

els
)

39
32

09
39

32
09

42
59

75
44

23
56

44
23

56
45

05
43

45
05

43
M

ap
-R

ed
uc

e(
10

24
ite

ra
tio

ns
)

11
98

13
10

44
53

11
36

68
12

59
54

12
90

26
13

20
94

13
31

18
Ra

nd
om

DA
G

(5
12

lev
els

)
10

33
16

77
89

3
86

98
1

99
21

7
10

40
84

10
78

22
11

21
82

Ra
nd

om
DA

G
(1

02
4l

ev
els

)
20

75
52

15
54

37
16

95
74

20
18

75
21

40
88

21
74

54
22

60
09

Ra
nd

om
DA

G
(2

04
8l

ev
els

)
41

06
39

31
14

53
34

72
90

40
32

91
42

31
19

43
78

59
44

76
29

Ra
nd

om
DA

G
(4

09
6l

ev
els

)
83

22
98

62
87

15
69

38
60

80
82

76
85

73
34

85
93

42
89

25
07

Ta
bl

e2
.1:

Co
m

pa
ris

on
of

CU
DA

gr
ap

h
siz

es
(#

no
de

s+
#e

dg
es

)o
n

lin
ea

rc
ha

in
,e

m
ba

rra
ss

in
gp

ar
all

eli
sm

,
di

vi
de

an
dc

on
qu

er,
m

ap
-re

du
ce

,a
nd

ra
nd

om
DA

G
tas

kg
ra

ph
sb

etw
ee

nc
ud

aF
low

an
dc

ud
aF

low
Ca

pt
ur

er
un

de
rd

iff
er

en
ts

tre
am

nu
m

be
rs

1(
RR

1)
,2

(R
R2

),
4(

RR
4)

,a
nd

8(
RR

8)
.R

R4
−

an
d

RR
8−

re
pr

es
en

to
ur

alg
or

ith
m

w
ith

ou
tt

he
de

pe
nd

en
cy

pr
un

in
g.

33

Task graph cudaFlow cudaFlowCapturer
RR1 RR2 RR4 RR8

Linear Chain (65536 nodes) 12 12 13 15 19
Embarrassing Parallelism (65536 nodes) 65547 12 14 18 26

Divide and Conquer (16 levels) 32779 12 14 18 26
Map-Reduce (1024 iterations) 15372 12 14 18 26

Random DAG (512 levels) 5318 12 80 244 559
Random DAG (1024 levels) 10547 12 150 440 1106
Random DAG (2048 levels) 21116 12 263 888 2213
Random DAG (4096 levels) 42545 12 522 1757 4348

Table 2.2: Comparison of the number of streams issued by the CUDA
runtime to run each task graph between cudaFlow and cudaFlowCapturer.

Table 2.1 compares the native CUDA graph size (#nodes+#edges)
of each benchmark among cudaFlow and cudaFlowCapturer of different
stream counts. Apparently, all methods have the same CUDA graph size in
the LC task graph. cudaFlowCapturer has a larger CUDA graph size than
cudaFlow in the EP task graph, since our algorithm assigns independent
nodes to streams that implicitly capture the sequential execution order
of enqueued nodes. The same situation happens in the DC task graph,
where the number of independent nodes grows exponentially over levels.
The CUDA graph size of DC, MR, and random DAG task graphs using
cudaFlowCapturer become larger as we increase the number of streams.
In our algorithm, more streams can have higher concurrency. However, it
may result in more events to implicitly capture the dependencies of the
original task graph. Our dependency pruning shows a significant effect on
reducing the CUDA graph size in MR and random DAG task graphs. For
example, the CUDA graph size on Random DAG with 4096 levels using
RR8 is 5.7% smaller than RR8−. This is because MR and random DAG task
graphs contain nodes that have more dependencies than others.

Table 2.2 compares the number of streams issued by the CUDA runtime
to run each task graph. cudaFlow consumes much larger numbers of
streams than cudaFlowCapturer on all benchmarks except the LC graph.

34

By default, cudaFlow keeps a one-to-one mapping between the task graph
and the CUDA graph. The CUDA runtime will issue as many streams as
possible to maximize the task concurrency, whereas cudaFlowCapturer
transforms the task graph into CUDA graph with a limited number of
streams.

0 2 4 6
·104

0

20

40

60

Number of nodes

Ti
m

e(
s)

Linear Chain
CF

RR1
RR2
RR4
RR8

0 2 4 6
·104

0

20

40

60

Number of nodes

Ti
m

e(
s)

Embarassing Parallelism
CF

RR1
RR2
RR4
RR8

8 10 12 14 16
0

20

40

60

Number of levels

Ti
m

e(
s)

Divide and Conquer
CF

RR1
RR2
RR4
RR8

0 1,000 2,000 3,000 4,000
0

20

40

60

Number of iterations

Ti
m

e(
s)

Map-Reduce
CF

RR1
RR2
RR4
RR8

0 1,000 2,000 3,000 4,000
0

20

40

60

80

Number of levels

Ti
m

e(
s)

Random DAG
CF

RR1
RR2
RR4
RR8

Figure 2.4: Execution time of each task graph at different task graph sizes
running on cudaFlow and cudaFlowCapturer of RR1, RR2, RR4, and RR8.

Figure 2.4 shows the execution time (including CUDA graph construc-
tion time) of each benchmark. Since LC task graph contains only sequential
nodes, all methods have almost the same execution time. RR4, RR8, and
cudaFlow are faster than RR1 and RR2 in all other task graphs, because
more streams have higher concurrency that leads to faster execution time.
Figure 2.5 compares the peak GPU memory usage of each benchmark at
different task graph size running on cudaFlow and cudaFlowCapturer.
We only compare cudaFlow with RR4 in LC, EP, DC, and MR task graphs
since RR1, RR2, RR4, and RR8 have almost the same GPU memory usage

35

0 2 4 6
·104

0

1,000

2,000

3,000

4,000

Number of nodes

GP
U

m
em

or
y(

M
B)

Linear Chain
CF

RR4

0 2 4 6
·104

0

2,000

4,000

6,000

8,000

Number of nodes

GP
U

m
em

or
y(

M
B)

Embarassing Parallelism
CF

RR4

8 10 12 14 16
0

2,000

4,000

6,000

Number of levels

GP
U

m
em

or
y(

M
B)

Divide and Conquer
CF

RR4

0 1,000 2,000 3,000 4,000
0

2,000

4,000

6,000

8,000

Number of iterations

GP
U

m
em

or
y(

M
B)

Map-Reduce
CF

RR4

0 1,000 2,000 3,000 4,000
0

0.2

0.4

0.6

0.8

1
·104

Number of levels

GP
U

m
em

or
y(

M
B)

Random DAG
CF

RR1
RR2
RR4
RR8

Figure 2.5: Comparison of peak GPU memory usage of each task graph at
different task graph sizes between cudaFlow and cudaFlowCapturer.

in these task graphs. The GPU memory usage of cudaFlow is much higher
than cudaFlowCapturer on all benchmarks except the LC task graph. In EP
task graph, cudaFlow consumes 2.1×more GPU memory than cudaFlow-
Capturer. This is because the CUDA runtime does not limit the number of
streams to run CUDA graphs. Figure 2.6(a) compares the execution time
under different task sizes. Task size is the number of elements computed
at each node. cudaFlow and RR8 become faster than the others when the
task size grows. Compared to lightweight tasks with the same stream

36

216 217 218 219 220 221 222
0

20
40
60
80

100
120

Task size

Ti
m

e(
s)

Task Granularity
CF

RR1
RR2
RR4
RR8

(a) Execution time of random DAG with
1024 levels at different task sizes.

200 400 600 800 1,000
0.3

0.4

0.5

0.6

Number of levels

Th
ro

ug
hp

ut

Co-Run
CF

RR1
RR2
RR4
RR8

(b) Throughput of corunning random
DAG at different task graph sizes.

Figure 2.6: (a) Task granularity and (b) co-run of random DAG running
on cudaFlow and cudaFlowCapturer.

count, heavy tasks benefit more from higher kernel concurrency.
Next, we study the throughput of co-running multiple GPU graphs.

The motivation is to emulate a server-like environment where multiple
client GPU programs run concurrently on the same machine. We consider
four co-run processes each executing one random DAG with the same
number of levels. The throughput is defined as the execution time of
running one process over the execution time of running four processes
concurrently [12]. A throughput of 1 implies that the co-run’s through-
put is the same as if the processes were run consecutively. Figure 2.6(b)
compares the throughput of each method. RR4 produces the highest
throughput than others, whereas cudaFlow runs out of GPU memory due
to unlimited streams.

Machine Learning: Large Sparse Neural Network Inference

The second experiment compares the performance of our transformation
algorithm with an optimally-constructed CUDA graph (i.e., cudaFlow)
using a large-scale machine learning workload from the IEEE HPEC Graph
Challenge 2020. The challenge is to inference extremely large sparse DNN

37

!!!!!

Figure 2.7: [2] describes the inference workload in a task graph. A blue
node represents a memory copy, and a red node represents a kernel.

models. We rearchitect the CUDA graph-based champion solution in [2]
using cudaFlow and cudaFlowCapturer. We run the experiment on six
DNN models composed of different neurons and layers. The statistics of
each DNN and its modeled task graph size are summarized in Table 2.3.
Figure 2.7 shows a partial task graph of the inference workload.

Neurons/Layers 120 480 1920 Model Size Image Nonzeros
4096 599 2399 9599 5.40 GB 25,019,051

65536 599 2399 9599 94.70 GB 392,191,985

Table 2.3: The modeled task graph size (#nodes+#edges) and the statistics
of each DNN benchmark (model size and image nonzeros).

#Neurons #Layers cudaFlow cudaFlowCapturer
RR1 RR2 RR4 RR8

120 1.61 1.34 1.19 1.20 1.19
4096 480 4.70 4.74 4.19 4.19 4.20

1920 17.41 19.14 17.08 17.14 17.15
120 14.78 15.99 14.06 14.06 14.05

65536 480 43.00 50.59 42.92 42.81 42.90
1920 162.20 193.11 162.12 162.35 162.30

Table 2.4: Comparison of the execution time between cudaFlow and cud-
aFlowCapturer for completing six DNN models.

38

#Neurons #Layers cudaFlow cudaFlowCapturer
RR1 RR2 RR4 RR8

120 35 23 36 38 42
4096 480 35 23 36 38 42

1920 35 23 36 38 42
120 35 23 36 38 42

65536 480 35 23 36 38 42
1920 35 23 36 38 42

Table 2.5: Comparison of number of streams issued by the CUDA runtime
between cudaFlow and cudaFlowCapturer for completing six DNN mod-
els.

0 500 1,000 1,500 2,000

1,300

1,350

1,400

Number of layers

GP
U

m
em

or
y(

M
B)

4096 neurons
CF

RR4

0 500 1,000 1,500 2,000
5,300

5,350

5,400

5,450

5,500

Number of layers

GP
U

m
em

or
y(

M
B)

65536 neurons
CF

RR4

Figure 2.8: Comparison of peak GPU memory usage at different number
of layers between cudaFlow and cudaFlowCapturer (RR4).

Table 2.4 compares the execution time (in seconds) of each benchmark
using cudaFlow and cudaFlowCapturer at different stream numbers. All
methods except RR1 have similar execution time across all DNNs. We
observe cudaFlowCapturer of two streams finishes the inference workload
with comparable performance of cudaFlow. Using four or eight streams
does not decrease the runtime. Table 2.5 compares the number of streams
issued by the CUDA runtime. cudaFlow consumes a similar number of
streams to cudaFlowCapturer. This is because the maximum degree of
concurrency in this particular task graph is around two, and the CUDA

39

runtime will not consume too many streams to maximize the parallelism.
Figure 2.8 compares the peak GPU memory usage at different numbers of
layers. Both methods have almost the same peak GPU memory usage due
to similar stream usage. This experiment demonstrates the efficiency of
our transformation algorithm.

2.6 Conclusion
In this chapter, we have introduced a lightweight task graph programming
framework, cudaFlow and cudaFlowCapturer, to enable efficient GPU
computation using CUDA graph in different scenarios. In five micro-
benchmarks and a real machine learning workload, our transformation
algorithm achieves comparable performance to the optimally-constructed
CUDA graph and consumes much less GPU resource. The source of
our programming model is available in [34]. In this work, Dian-Lun Lin
was the primary contributor, responsible for the majority of the research
and development efforts. Tsung-Wei Huang supervised the research,
providing guidance and oversight throughout the project. All authors
participated in discussing the results and contributed to the preparation
and review of the final manuscript.

40

3 rtlflow: a gpu acceleration flow for rtl
simulation with batch stimulus

3.1 Abstract
High-throughput RTL simulation is critical for verifying today’s highly
complex SoCs. Recent research has explored accelerating RTL simulation
by leveraging event-driven approaches or partitioning heuristics to speed
up simulation on a single stimulus. To further accelerate throughput
performance, industry-quality functional verification signoff must explore
running multiple stimulus (i.e., batch stimulus) simultaneously, either
with directed tests or random inputs. In this chapter, we propose RTLFlow,
a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow
first transpiles RTL into CUDA kernels that each simulates a partition
of the RTL simultaneously across multiple stimulus. It also leverages
CUDA Graph and pipeline scheduling for efficient runtime execution.
Measuring experimental results on a large industrial design (NVDLA)
with 65536 stimulus, we show that RTLflow running on a single A6000
GPU can achieve a 40× runtime speed-up when compared to an 80-thread
multi-core CPU baseline.

3.2 Introduction
Register-transfer level (RTL) simulation is a critical part of designing
and verifying today’s highly complex SoCs, processors, and accelera-
tors [60, 61]. It is widely used in logic design, directed verification, con-
strained random verification, performance verification, and debugging.
For functional verification signoff [62], converging on coverage closure
or avoiding bug escape from corner cases typically requires many thou-
sands of nightly regression tests on the same Design-Under-Test (DUT)

41

with different stimulus, which we refer to as stimulus-level parallelism. Dif-
ferent stimulus could be different stimulus outputs from a constrained
random testcase generator, or perturbations to directed or random tests
with different simulation knobs. As SoC complexity continues to grow,
industry-quality functional verification signoff requires a significant and
growing amount of compute resource to simulate RTL for dozens of dif-
ferent units within an SoC across many thousands of stimulus daily in the
march to tapeout. Speeding up RTL simulation throughput is critical for
finding corner case bugs and achieving coverage closure.

!
"#
$
%
"$
#&
'(
&
)
&
(

*++

!",-$($!'(&)&(

-$.

!$/

!"#$%&'

()*+,%,(-%./.% 0121%%.%*(+

()
2,
3)
,
2.
-%
./
.%

0
12
1%
%.
%*
(+ 4.2*%1)&2

56657"

899!"#

Figure 3.1: RTLflow explores both stimulus- and structure-level paral-
lelisms to achieve high-performance RTL simulation using GPU comput-
ing.

In recent years, we have seen increasing interest in accelerating RTL
simulation in open-source tools, as shown in Figure 3.1. Verilator [20]
is the fastest open-source RTL simulator and has been widely used in
both industry and academic design projects. It transpiles (source-to-source
compile) RTL code into C++ code based on RTL abstract syntax trees
(ASTs). Recently, Verilator has explored structure-level parallelism via
RTL partitioning to support multi-threading. ESSENT [21] is a single-
threaded simulator which introduces an event-driven algorithm using
conditional execution to skip over unnecessary simulation work. ESSENT
has shown up to 2–10× speed-up over single-threaded Verilator but the
result does not scale well to large designs due to the lack of multi-threading.

42

CXXRTL is a Yosys [22] simulation back-end which transpiles an internal
representation (IR) generated by the Yosys front-end to C++ simulation
code. However, CXXRTL suffers from extremely long compilation time on
large designs and does not have any multi-threading capability.

Prior research into accelerating RTL simulation has focused on explor-
ing strong scaling of a single stimulus, i.e., reducing time-to-solution for
simulating one DUT running one stimulus use case. Multi-stimulus simu-
lation (multiple stimulus running on the same DUT), or weak scaling, has
been largely ignored in the research because it is commonly done by run-
ning multiple instances of single-stimulus simulation on a multi-core CPU
system. Modern GPUs support orders of magnitude more parallelism
and much higher memory bandwidth than multi-core CPU systems. The
large amount of data parallelism exhibited by multiple stimulus provides
a unique opportunity to improve the total simulation performance by
exploring stimulus-level parallelism on modern GPUs.

GPU-based RTL simulation has been investigated before, but also lim-
ited to a single stimulus. For instance, [23] offloads the simulation work-
load to GPU by mapping each RTL process (a group of simulation in-
structions) to a GPU kernel using one thread per warp. This mapping,
however, is not efficient since other threads within a warp are not utilized.
[24, 25, 26, 27] use GPU to accelerate gate-level simulation. Neverthe-
less, gate-level simulation techniques are not suitable for RTL simulation
because of different objectives in design flow.

In this chapter, we propose RTLflow, a novel GPU acceleration flow
to speed up simultaneous multi-stimulus RTL simulation. As shown in
Figure 3.1, RTLflow explores both structure- and stimulus-level paral-
lelisms to achieve high-performance RTL simulation. To the best of our
knowledge, this is the first work of GPU-accelerated RTL simulation with
multiple stimulus. We summarize three key contributions as follows:

• We introduce an automatic flow to transpile RTL Verilog simulation

43

code into CUDA equivalents that are optimized for both structure- and
stimulus-level parallelisms.

• We introduce a GPU-aware RTL graph partitioning algorithm atop
the modern CUDA Graph execution model to explore structure-level
parallelism while minimizing kernel call overheads over simulation
cycles.

• We introduce a pipeline-based scheduling algorithm that further ex-
plores inter-stimulus parallelism to enable efficient resource utilization
and computation overlap between CPU and GPU.

We have evaluated RTLflow on industrial designs and demonstrated
its promising performance compared to the state-of-the-art Verilator [20]
and ESSENT [21]. RTLflow on one A6000 GPU outperforms Verilator
and ESSENT on 80 CPU threads with up to 40× speed-up for a Nvidia
Deep Learning Accelerator (NVDLA) design [63] with 65536 stimulus.
We have conducted detailed experiments to demonstrate performance
advantages of our pipeline scheduling, GPU-aware partitioning algorithm,
and our CUDA Graph execution strategy that explore various degrees
of parallelism compared to the conventional methods. RTLflow is open-
source in [4] to benefit the community and inspire software simulation
research with heterogeneous parallelism.

3.3 Background and Motivation
RTL simulation represents an input design as a directed graph, namely
RTL graph. Each node represents a logic element that consumes a set of
instructions. Each edge represents a wire to propagate signals between
nodes. Simulating a single cycle or a timestamp is an evaluation of the graph
which consumes inputs and propagates them through logic elements to
produce output values. A stimulus provides a sequence of such inputs to

44

drive simulation. Due to the growing chip sizes, modern RTL simulation
requires running many stimulus across different testbenches (e.g., function
tests, random tests) to validate the functionality of a design [60].

Conventional RTL Simulation Techniques

RTL simulation typically transpiles the given Verilog to C++ and lets a
compiler optimize the simulation code [22, 21, 20]. Listing 3.1 gives an
example. The code wraps an input design dut with a custom simulator
sim and simulates the waveforms cycle by cycle. At each cycle iteration,
we first set the inputs of dut using the given stimulus file. Due to I/O and
interaction with external testbench drivers, this step, set_inputs, typically
runs on CPU and becomes expensive when multiple stimulus exist. We
then evaluate the design based on the inputs at rising and falling clocks, 0
and 1. The iteration continues until the simulator emits a stop signal or
completes all simulation cycles.
Design dut ;
Simulator sim(dut) ; // c o n s t r u c t a s imulator
s i z e _ t c = 0 ;
while (! sim . stop and c <= NUM_CYCLES) {

dut . s e t _ i n p u t s (c) ; // s e t inputs f o r the c y c l e c
dut . s e t _ c l o c k (0) ; // toggle c lock to zero
sim . evaluate () ; // evaluate the design
dut . s e t _ c l o c k (1) ; // toggle c lock to one
sim . evaluate () ; // evaluate the design
c = c + 1 ; // move to the next c y c l e

}

Listing 3.1: A transpiled C++ loop for RTL simulation.

45

Event-Driven and Full-Cycle Simulations

Depending on how values are propagated within a stimulus, simula-
tors can be event-driven or full-cycle. Event-driven simulators dynamically
schedule nodes to perform work only on the active portion of the design.
However, managing events requires expensive control-flow costs, making
it very difficult to parallelize. Full-cycle simulators instead evaluate the
value of every node at every cycle by effectively inlining the entire design
and transpiling RTL to straight-line C++ simulation code. The code can
be compiled to a highly optimized simulator for the target design. For
large designs, simulators can partition the graph and evaluate partitioned
subgraphs or tasks in parallel using a static or a dynamic load-balancing
scheduler.

Prior Works and their Limitations

Verilator is an open-source full-cycle simulator that has been widely used
in both academic and industrial projects due to its absolute speed and
robustness [20]. Verilator transpiles input simulation sources (.v) to C++
via AST techniques, applies logical and functional optimizations, and runs
simulation for one stimulus on CPU. To further improve the performance,
Verilator adopts an iterative partition algorithm [64] to group adjacent
nodes into a set of atomic macro tasks and models dependent macro tasks
in a task graph that runs in a multi-threaded environment using a static
scheduling algorithm. Verilator defines a parallelism parameter (α) to allow
fine-tuning the granularity of each macro task.

Despite improved performance, the speed benefit of Verilator has been
limited to strong scalability within a stimulus, and the result has largely
plateaued at 8–10 CPU cores [20]. To complete the whole simulation
workload with batch stimulus, the de facto way is to fork multiple Verilator
processes and run independent stimulus in parallel. This organization

46

is simple but takes no advantage of the large available data parallelism
that resides in macro tasks via simulating batch stimulus simultaneously.
Specifically, GPU computing provides potential for exploiting this available
data parallelism, incorporating high volumes of arithmetic operations. The
result can bring significant yet largely untapped performance benefits to
various RTL simulation applications, such as functional verification signoff,
or design space exploration tasks that count on large numbers of stimulus
to validate design choices.

On the other hand, ESSENT adopts an event-driven approach to stop
the simulation earlier whenever the activity becomes zero [21]. This ap-
proach, however, relies on sophisticated runtime controls and conditionals
that are difficult to scale beyond a single thread. The speed-up of ESSENT
thus becomes less significant on large designs or simulation workloads
with high activities. For example, Verilator of 12 threads can be 5.5× faster
than one thread [20], which is far more than the speed-up report of ES-
SENT in [21]. Moreover, the runtime of ESSENT calls for very frequent
dynamic control flow, making it hard to explore massive data parallelism
among batch stimulus in a uniform fashion.

Challenges with Batch Stimulus

As the RTL simulation workload continues to increase, in both design size
and data size, new simulators must leverage the power of GPU computing
to tackle many stimulus simultaneously. To this end, we have identified
three major challenges to overcome:

Lack of an Open Infrastructure to Break Language Barrier

RTL speaks a different language from CUDA. It is impractical to ask devel-
opers to rewrite every RTL simulation workload to CUDA. While automatic
transpilation tools from RTL to C++ are available in the open-source do-

47

main [22, 20], they cannot be used out of the box for GPUs. The distinct
performance characteristics between CPU and GPU require very different
settings of memory and data layout transpilation to make the most of GPU
computing. An open-source transpilation tool for this purpose will largely
fill the gap and inspire broad research efforts in software simulation.

Lack of a GPU-aware RTL Partitioning Algorithm

Existing full-cycle RTL simulators [22, 20] all partition an RTL graph into
dependent subgraphs to support multi-threaded CPU parallelism. These
partitioning algorithms frequently count on hard-coded parameters to
estimate the cost of clustering nodes in terms of CPU instructions. Such
an estimate, however, is not reflective of what will happen in a real GPU-
based simulation for batch stimulus. For instance, depending on how we
schedule batch stimulus to run on a GPU, the generated simulation code
(CUDA and C++) and its memory layout can change dramatically after
compiler optimization (e.g., nvcc). We need a GPU-aware partitioning
algorithm that can perform estimates in real operating conditions. Fur-
thermore, we should notice that partitioned RTL graphs can result in a
non-trivial topology of GPU tasks (e.g., kernel, memory copy, operation
dependency). As a full-cycle simulator can evaluate many thousands or
millions of cycles, launching these dependent GPU tasks can incur signifi-
cant runtime overheads, such as scheduling streams/events and invoking
kernels, that outweigh the performance benefit of GPU computing.

Lack of an Efficient CPU-GPU Task Scheduler

A practical GPU-accelerated RTL simulator with batch stimulus is both
CPU- and GPU-intensive. As shown in Listing 3.1, each simulation itera-
tion uses CPU threads to read and set the inputs (dut.set_inputs) from
an external file or, in our case many stimulus files, before we can offload the
evaluation to a GPU (sim.evaluate). As we increase the number of stimu-

48

lus, this sequential computation can incur expensive waiting time between
CPU and GPU. Figure 3.2 gives an example of set_inputs time and GPU
utilization rate at different numbers of stimulus. We can see that the GPU
utilization rate drops significantly as the number of stimulus increases,
since GPU needs to wait until CPU threads finish setting inputs at each
iteration. The CPU-based call to set simulation input, dut.set_inputs in
Listing 3.1, becomes the primarily bottleneck. To overcome this problem,
we need an efficient scheduling method to overlap CPU and GPU tasks
across simulation loops.

!"#

"$#

$%#

&#

'&#

%&#

$&#

(&#

"&#

)&#

!&#

*&#

&
%&
(&
)&

*&
'&&
'%&
'(&
')&
'*&

'&%((&+) ')$*(

,
-
.
/0
12
32
45
12
6
7
/8
51
9/
:#
;

<
0
7
12
=
9/
:>
;

! >12=030>

>91/27?01>/:@-.; 9A530519/B9>2C7/:,-.; ,-./01232451267/8519

Figure 3.2: Runtime breakdown of a simulation benchmark in terms of set-
ting inputs, evaluating the design, and the corresponding GPU utilization
rate under different numbers of stimulus.

3.4 RTLflow
Figure 3.3 shows the overview of RTLflow. At a high level, RTLflow auto-
matically transpiles RTL sources (.v) to C++ and CUDA code to accelerate
multi-stimulus simulation on a GPU. Our transpiler is built atop Verilator
to inherit its RTL-level optimization facilities, such as inverter pushing,
module inlining, and constant propagation that have been rigorously
tested for over 25 years in the Verilator community. This decision allows

49

!"# $%&'($)'*&+,'$-*

'(..*$,,/'$'0/,

1234*5($67

!"#$"%&'()"&*#+$,-.%+*.($ /+,0&1#+-2&'()"&*#+$,-.%+*.($

"($,&608.

9:2 ;.;/(+ 0,<.-

;$660,5
:06.80,.*&)7.<=80,5

9:2>$)).8.($'.<*;=8'0>&'0;=8=&*!"#*&0;=8$'/(

?,)(.;.,'$8 9:2

;.;/(+*$88/)$'0/,

1/;608.*@,A))B

!"#*&/=().&*@CAB

9:2>D(.*6$('0'0/,0,5

@E1E1*&$;680,5B

Figure 3.3: Overview of RTLflow.

us to focus on the problem of multi-stimulus simulation itself and to en-
able future potential integration into Verilator for the benefit of the entire
community.

RTLflow consists of two parts, kernel code transpilation and task graph
code transpilation. In kernel code transpilation, we annotate an RTL AST
with textual modifications, and transpile the annotated RTL AST into
C++ and CUDA using effective GPU memory allocation and mapping
algorithms. In task graph code transpilation, we partition the RTL graph
into a GPU task graph using a sampling-based algorithm. We execute the
GPU task graph using modern CUDA Graph parallelism [54], which is
particularly useful for our workload as it largely reduces repetitive kernel
call overheads at simulation cycles. To further improve the performance,

50

we introduce a pipeline-based scheduling algorithm inspired by [65] to
explore inter-stimulus parallelism across simulation iterations.

Kernel Code Transpilation

We build our transpilation techniques atop Verilator’s RTL AST parser to
reuse its I/O infrastructure. However, it is still impossible to transpile Ver-
ilog into not only compilable but efficient CUDA code without optimally
designed GPU memory management strategies and carefully developed
AST-to-CUDA transpiler. For example, one easy way to transpile an RTL
AST into CUDA is to traverse the RTL AST and repeatedly allocate GPU
memory for a variable (i.e., data signal) as needed. However, this orga-
nization induces significant memory allocation overheads and memory
fragmentation problems that hamper the performance. To generate opti-
mized CUDA kernels for fast multi-stimulus simulation, the transpiled
C++/CUDA code and CUDA kernels must achieve both efficient memory
access and minimal memory allocation overheads. To this end, our kernel
code transpilation consists of three stages: AST annotation, incremental
GPU memory allocation, and GPU memory index mapping. AST annotation
annotates each AST node with textual modifications and replaces embed-
ded C++ code with compilable CUDA code. Incremental GPU memory
allocation incrementally assigns a GPU memory offset for each variable.
GPU memory index mapping transpiles each AST node to CUDA code
by mapping each variable to a GPU memory location. In our kernel, each
GPU thread is responsible for running the simulation code of one stimulus.

Figure 3.4 shows an RTL AST in Verilator that consists of two modules,
m1 and m2. m1 contains two cells (c1 and c2), two variables (in and sum),
and one function (func). A cell is an instance of a module. For example,
c1 is an instance of m1 that contains two variables, c1.in and c1.sum. The
dotted line between VARREF and VAR represents that VARREF is a variable
reference to VAR. This RTL AST uses a subtree of seven nodes to describe

51

!""#$%&#%&'&()*+(&,&"-./

0!1123

0!1 "-.

!44

0!1123
56789&

()*+(

0!1 #%

!88:;7

53<75 =-%>52??&>(

52??&>@

A64<?2 .@A64<?2 .(

Figure 3.4: An RTL AST that consists of two modules (m1 and m2). m1 con-
tains two cells (c1 and c2), two variables (in and sum), and one function
(func). The RTL AST requires seven AST nodes to describe one line of
Verilog code (the assignment statement in black).

one line of assignment code in Verilog. With the AST, Verilator emits C++
simulation code for a single stimulus through a tree traversal algorithm.
However, this algorithm cannot directly generate CUDA code because the
memory access patterns on GPUs with multiple stimulus are completely
different. In the following subsections, we explain three most important
strategies that address the transpilation challenge, using Figure 3.4 as an
example.

AST Annotation

Manipulating ASTs requires a massive coding effort since we need to
carefully take care of each AST node type (more than 300 node types in
Verilator) for generating compilable CUDA code. Some AST node types
could also include embedded C++ code that does not compile in CUDA.
For instance, Figure 3.5 shows the simple and recursive subtrees each
rooted at a ARRSEL AST node that is responsible for generating variable

52

!"#!$#$%%

&'(()*

!"
'((+),

-./+01

$

'((+),

&'(()*

!$

2!345161/1! 716189:;#!345#/1! <$16189: 61$%%1

=>>?@817

=>>?@81<$

&@49A38=4

(0,>A=B

&'(()*

!"

'((+),
!"#$%

!345#/1! 716189: 61$%

&@49A38=4

(0,>A=B

23;1+9CDA@1'((+),1?EF84@@

2F;1(@GE4?9!@1'((+),1?EF84@@

=>>?@817

-./+01

$

Figure 3.5: (a) Simple ARRSEL subtree and (b) Recursive ARRSEL subtree.
Right part shows generated C++/CUDA code using Verilator or RTLflow.

name and index. Verilator transpiles the two subtrees by simply generating
v1[2] and v1[v2[2]], while RTLflow needs to throughly look into each
child node for generating correct syntax (i.e, correct order of "(", ")", "[",
and "]"). The correct syntax is annotated at the ARRSEL AST node for
later codegen. Another example of AST annotation is adding a keyword
(either __global__ or __device__) for functions, as CUDA requires to
distinguish whether a function could be called by a host (CPU) or a device
(GPU). Since RTLflow partitions an RTL graph into dependent macro
tasks that call functions internally, we annotate those macro tasks with
__global__ and others with __device__.

53

Incremental GPU Memory Allocation

Allocating GPU memory for all variables to enable high-performance mem-
ory access is challenging, as the width of each variable is largely different.
We have researched several strategies to allocate GPU memory for quick
memory access, such as dynamic allocated arrays and one fixed-width
array. However, none of them can give us a promising performance result
during simulation. For example, Figure 3.6 shows an inefficient strat-
egy that uses one fixed-width array of type uint8_t to store all variables
where in is a 6-bit variable and sum is a 14-bit variable stored into two
memory locations, sum1 and sum2. To load all bits in sum, each GPU thread
needs to access strided memory twice. This data organization method
results in uncoalesced memory access that largely degrades the simulation
performance.

!"#$%&$'

())(*

"#

+!,- ..

/(01'2()"(345'6!74"0($5+'8'$",5+'9:)'8'+$",!4!+

+!,;

"#

+!,- +!,;

..

<1)5(6'- <1)5(6';

<1)5(6'- <1)5(6';

"#'='>?3"$'2()"(345

+!,'='-@?3"$'2()"(345

Figure 3.6: GPU memory allocation using one fixed-width memory array
of type uint8_t. in is a 6-bit variable, and sum is a 14-bit variable stored
into two memory locations, sum1 and sum2.

Our incremental GPU memory allocation overcomes this issue by pre-
allocating four GPU arrays and incrementally assigning each variable a
GPU memory offset in reference to the preallocated arrays. The four GPU
arrays are var8, var16, var32, and var64, each representing a fixed-width
variable (uint8_t for 8 bits, uint16_t for 16 bits, and so on). To minimize

54

the GPU memory usage, a variable is stored into the smallest of the four
types that fits the width of the variable.

!"#$

%&'()$*)+

, -)'.&/&-

0 !"#'"1/2-

345-2 3'6)47

! $71')-

89:'(89:'(

89:-&.

!"#9;

%&'()9;*)+

!"#;<

%&'();<*)+
!"#=>

%&'()=>*)+

??

0 !"#'"1/2-

345-2 3'6)47

@79A"=>71')-

, -)'.&/&-

8>:'(

89:'(

??
89:-&.

8>:-&. ??

89:-&. ?

??9

>

5BB-2)

=

??

5BB-2)

9A

9$

? ??? ??

Figure 3.7: GPU memory allocation for Figure 3.4. Each cell (c1 and c2)
contains two variables (in and sum). A variable is stored in the smallest
array of types uint8_t, uint16_t, uint32_t, and uint64_t that fits the
variable width.

Figure 3.7 shows the memory allocation results of our strategy based
on Figure 3.4. Because the width of sum is between 9 and 16 bits, we
use uint16_t to store c1.sum and c2.sum, similarly for in whose width is
smaller than eight bits. To handle N stimulus, we duplicate one variable
per cell N times in the corresponding array. The size of each array is thus
N× Si, where Si is the number of variables in array i.

GPU Memory Index Mapping

The goal of GPU memory index mapping is to traverse an RTL AST and
use computed GPU memory offsets to emit GPU-efficient CUDA code.
Listing 3.2 shows Verilator’s transpiled C++ code using the partial RTL
AST shown in Figure 3.4. As opposed to Listing 3.2, Listing 3.3 shows the
transpiled CUDA code by RTLflow based on the offsets shown in Figure
3.7. To enable efficient GPU memory access, the GPU relies on memory

55

coalescing to have GPU threads run the same instruction of consecutive
memory locations. Since one GPU thread is responsible for a stimulus,
we map the GPU memory index of each variable to GPU thread id plus
the offset strided by N. For instance, the offset of c1.in is 1 and thus
its index is mapped to N*1 plus the thread id tid that handles the tid-th
stimulus. The proposed mapping strategy allows all GPU threads to access
consecutive GPU memory locations throughout the entire RTL simulation,
thus achieving highly coalesced memory access.
void m1 : : c1_func () {

c1 . in = 10h1 + c1 . sum ;
}
void m1 : : c2_func () {

c2 . in = 10h1 + c2 . sum ;
}

Listing 3.2: Transpiled C++ simulation pseudocode of Figure 3.4 by Veri-
lator for a single stimulus. A hardware design is allowed to copy a wider
value (sum) to a narrower target (in) (truncation will be applied).

// RTL simulat ion code with N stimulus
__device__ void m1 : : c1_func () {

t i d=blockDim . x∗blockIdx . x+threadIdx . x ;
var8 [N∗1+ t i d]= // o f f s e t of c1 . in i s 1

10h1+var16 [N∗17+ t i d] ; // o f f s e t of c1 . sum i s 17
}
__device__ void m1 : : c2_func () {

t i d=blockDim . x∗blockIdx . x+threadIdx . x ;
var8 [N∗2+ t i d]= // o f f s e t of c2 . in i s 2

10h1+var16 [N∗18+ t i d] ; // o f f s e t of c2 . sum i s 18
}

Listing 3.3: Transpiled CUDA kernel pseudocode of Figure 3.4 using the
GPU memory offsets in Figure 3.7.

56

Task Graph Code Transpilation

The goal of task graph code transpilation is to generate efficient execu-
tion code using three strategies: 1) GPU-aware partitioning to find a
GPU-efficient task graph, 2) CUDA Graph execution to reduce kernel call
overheads, and 3) pipeline scheduling to enable efficient CPU-GPU task
overlap.

GPU-aware Partitioning

A common RTL graph partitioning algorithm iteratively merges two nodes
into a task using static, hard-coded cost estimates [64, 20]. This strategy
is simple but is not efficient for RTLflow. Specifically, to maximize the
performance of multi-stimulus simulation, we explore several degrees of
parallelism (e.g., task graph parallelism and pipeline scheduling) that have
dynamic interaction with the CUDA runtime. As a result, we introduce a
GPU-aware partitioning algorithm that estimates partition costs in real
operating conditions.

Figure 3.8 shows the overview of our algorithm to find a GPU-efficient
task graph. We iteratively explore a new weight vector for partitioning (i.e.,
merging nodes into tasks) using a Markov Chain Monte Carlo (MCMC)
sampling algorithm. Our algorithm consists of two components: estimator
and optimizer. The estimator estimates the cost of a proposed GPU task
graph by compiling its transpiled code and running it on a GPU. We eval-
uate the graph with a small number of randomly selected stimulus and
cycles, and use the results to predict other combinations. This strategy
allows us to discover parameters from a small set of data that is representa-
tive for the entire problem. The optimizer iteratively proposes a new graph
by randomly and incrementally altering the weight function weight_sum

57

!"#$%$&'(

)(*+,"$-'. /0.'

1,#$%*#'.2/0,#
1,#$%*#0(

30%"$-'24256+

7',#28'$9:#,

;',$9+242<+$#$*-28'$9:#,

=3=3242)(*+,"$-'

Figure 3.8: GPU-aware partitioning algorithm using MCMC to explore
the best combination of weights under real operating conditions (compile
+ run).

from the previous iteration, defined below:

weight_sum(task) =
∑
t∈T

wt ∗Nt (3.1)

where T is the set of top k (e.g., 30) most frequently appeared RTL nodes,
wt is the weight of an RTL node t, and Nt is the number of RTL node t in
the given task. Given a merged task, we compute the weighted sum of all
RTL nodes in the task and use it to produce a new task graph.

In MCMC sampling, we obtain samples from a probability distribution
so that a GPU task graph of faster runtime is visited more often than the
slower ones [66, 67]. The probability distribution is the following:

p(G) ∝ exp(−β ∗ cost(G)) (3.2)

whereG is a GPU task graph, cost(G) is the estimated cost ofG from the esti-

58

mator, and β is a constant that can be chosen. We use Metropolis-Hastings
algorithm [67] to generate Markov chains, which keeps the current GPU
task graph and proposes a new one G∗. If G∗ is accepted, it replaces the
current graph; otherwise we propose another GPU task graph based on G

again. The acceptance rate of a new GPU task graph is the following:

α(G→ G∗) = min(1,p(G∗)/p(G))

= min(1, exp(β ∗ (cost(G) − cost(G∗))))
(3.3)

where G∗ with a lower cost than G is always accepted, and G∗ with a
higher cost than G may still be accepted with a probability depending on
difference between cost(G) and cost(G∗).

Algorithm 3 shows the pseudocode of our proposed algorithm. At
the beginning, we initialize the weight of each RTL node to one (line
5). During the sampling process, the optimizer randomly increases one
weight from the current weights (line 7). It then proposes a new GPU
task graph in terms of new weights (line 8). The estimator evaluates the
proposed graph with the given number of stimulus and cycles and returns
an estimated cost (line 9). If the current estimated cost is larger than the
new one, the optimizer accepts the new weights and updates the current
cost (line 10-14). If not, we generate a random number from 0 to 1 to
determine if we accept the proposed graph (line 16-20). The iteration
continues until we cannot find a better graph for a maximum number of
iterations.

CUDA Graph Execution Model

After obtaining a partitioned GPU task graph, we need to offload it to a
GPU. Traditionally, this is done by creating multiple CUDA streams and
events to dynamically schedule tasks and manage their dependencies.
However, this paradigm will incur significant runtime overheads because

59

Algorithm 3: GPU-aware partitioning algorithm
Input: dut: a design under test
Input: MAX_ITER: maximum #iterations
Input: MAX_UNIMPROVED: maximum #unimproved iterations

1 cur_cost←∞
2 iter, cnt← 0
3 Optimizer opt(dut)
4 Estimator est(dut)
5 opt.initialize_weights()
6 while cnt < MAX_UNIMPROVED and iter++ < MAX_ITER
7 opt.random_increase()
8 graph← opt.propose()
9 cost← est.estimate_cost(graph)

10 if cur_cost > cost then
11 opt.update_weights()
12 cur_cost← cost

13 cnt← 0
14 end
15 else
16 rand← uniform_distribution(0, 1)
17 if accept_rate(cost, cur_cost) > rand then
18 opt.update_weights()
19 cur_cost← cost

20 end
21 cnt++
22 end
23 end

it repeats the same stream and event management on the same CUDA
task graph over all simulation cycles. The new CUDA Graph execution
model [54] is particularly useful for solving this problem via a define-once-
run-repeatedly CUDA graph. The CUDA runtime can perform whole-graph
optimizations that are nearly impossible to achieve by the stream-based
approach. Figure 3.9 and 3.10 illustrate the performance advantage of
CUDA Graph compared to a stream-based execution diagram that evalu-
ates a GPU task graph. As we can observe, the stream-based execution

60

incurs multiple CUDA call overheads (e.g., launching kernels through
streams, creating event dependencies) within a cycle, and these overheads
accumulate across cycles. Such overheads can be eliminated by launching
a predefined CUDA graph to improve performance.

! "

#

$! "

#

$

#%&

'%&

#()*+,- #()*+,.

/01,234+056708+9,+:+);3<=>

/71,#&$!,'40?@6708+9,+:+);3<=>

! "

#

$! "

#

$

#%&

'%&
!!

!"

#()*+,- #()*+,.

!"#$"%&"'"()*+,$-./0 (1%% ,2"#3"14 52"$* !! " !" 6*#"17

!

"

#

$

#&$!,A40?@

!"#$%"#&

'(!")*&+,"!-")#

Figure 3.9: Stream-based execution versus CUDA Graph-based execution
of the CUDA graph for two cycles. Stream-based execution incurs repeti-
tive CUDA call overheads to schedule dependent kernels at each cycle.

CUDA

Graph

Stream

Figure 3.10: Partial simulation timeline of CUDA Graph-based execution
and stream-based execution using the data extracted from Nvidia Nsight
Systems [3]. Blue bars represent calls to launch CUDA kernels and green
bars represent CUDA synchronization calls.

61

Pipeline Scheduling Algorithm

!"#$%&'"(!%&)*+,"'!&%-.!%#/#,!

!0",+"'!

1!&)(.

!0",+"'!

1!&)(.

&!'%).2+'&

&!'%#,-#3

&!'%

#,-#3

4"'#$%&')*+,+&

567

867

!!" #!&'"(!%9

&'"(!%:

&'"(!%;

).'!<=&')*+,+&%2"<",,!,)&*

!"" #! !!" #"

!#" #! !"" #" !!" ##

Figure 3.11: The proposed pipeline scheduling algorithm to enable efficient
overlap between CPU and GPU tasks.

As shown in Listing 3.1 and Figure 3.2, multi-stimulus RTL simulation
incurs significant overheads in setting the inputs, which in turn causes
the GPU to wait. To overcome this problem, we further partition batch
stimulus into groups and use a pipeline scheduling algorithm to overlap
CPU and GPU tasks both inside and outside partitioned stimulus groups.

Figure 3.11 shows the overview of our pipeline scheduling algorithm.
We partition batch stimulus into groups that each group, Gi, can be con-
currently simulated in a stage. At stage 1, we pass G1 into our pipeline
and simulate it at the first cycle, C1. Simulating one cycle consists of four
dependent CPU/GPU tasks shown in Figure 3.11. At stage 2, we pass G2
into our pipeline. We then simulate G1 at C2 and G2 at C1 in parallel. Since
our pipeline scheduling does not construct a dependency between groups,
tasks in G1 and tasks in G2 can be overlapped. For instance, we can execute

62

Verilator RTLflow
Design Verilog LOC #AST nodes LOC Ttrans LOC Ttrans

riscv-mini 3306 25224 10640 < 1s 10935 < 1s
Spinal 6858 22888 8429 < 1s 9654 < 1s

NVDLA 511955 1476991 397536 30s 560412 33s
Table 3.1: Statistics of the benchmarks and results of transpiled code for
Verilator and RTLflow. The results present lines of code (LOC) and tran-
spilation time (Ttrans).

set_inputs in G1 and evaluate_design in G2 simultaneously. Specifically,
a GPU only needs to wait for CPU threads to finish set_inputs for a group,
hence overlapping computation between CPU and GPU tasks. Also, since
we can offload multiple evaluation_design to a GPU at a time, overlaps
of evaluation_design across different groups can further increase GPU
utilization rate.

Note that RTLflow simulates multiple stimulus in parallel, different
memory coalescing patterns can occur in terms of the number of stim-
ulus. However, our transpliation can easily handle different coalescing
patterns through parameterization. For example, our pipeline scheduling
algorithm partitions all stimulus into groups such that all stimulus within
a group is simultaneously simulated on a GPU. We can ensure memory
access is mostly coalesced by setting the proper group size (e.g., 256 or
1024 stimulus per group).

3.5 Experimental Results
We evaluate RTLflow’s performance on three industrial designs, NVDLA,
Spinal, and riscv-mini. NVDLA is Nvidia’s open-source project of deep
learning accelerator [63]. riscv-mini and Spinal are both RISC-V CPU
projects [68, 69]. Table 3.1 lists the statistics of each design. All projects
have scripts that allow us to generate multiple stimulus with different

63

configurations. We implement RTLflow using C++17 and CUDA 11.6,
and compile RTLflow using nvcc on a host compiler of GCC-8 with opti-
mization -O2 enabled. We did not observe much performance difference
between -O2 and -O3, but -O2 makes the compilation time faster (∼3 min-
utes for -O2 and ∼10 minutes for -O3). We use Taskflow [12, 70] and
its work-stealing runtime [71] to implement our pipeline scheduling al-
gorithm. We run Verilator and ESSENT on a powerful CPU server and
RTLflow on a GPU desktop, described below:

• Machine 1 - a Ubuntu Linux 5.0.0-21-generic x86 64-bit machine with
40 Intel Xeon Gold 6138 CPU cores (80 CPU threads) at 2.00 GHz and
256 GB RAM

• Machine 2 - a CentOS 8 x86 64-bit machine with 8 Intel i7-11700 CPU
cores (16 CPU threads) at 2.5 GHz, one RTX A6000 48 GB GPU, and
128 GB RAM

Note that typical RTL simulation workloads do not involve any floating-
point operations, i.e., all computations of RTLflow are integers. We do
not leverage any single-precision optimizations to accelerate throughput
performance.

Baseline

We consider Verilator and ESSENT as our CPU baselines to measure the
performance of RTLflow on simulating batch stimulus. To emulate exist-
ing RTL simulation methods for batch stimulus, we fork 80 processes of
ESSENT (single-threaded simulator) to run 80 stimulus in parallel, and
ten processes of Verilator (multi-threaded simulator) to run ten stimu-
lus in parallel and spawn eight threads per process to run each stimulus.
For NVDLA, we observe setting the parallelism parameter (α) to eight
in Verilator’s RTL graph partitioning algorithm achieves the best perfor-
mance; for Spinal and riscv-mini, we set α to two for Verilator, and fork

64

40 processes of Verilator to run 40 stimulus in parallel to achieve the best
performance. Compared with NVDLA, Spinal and riscv-mini are smaller
designs and do not benefit as much from the partitioning.

Transpilation Results

Table 3.1 shows the benchmark statistics and the complexity of each tran-
spiled code using Verilator and RTLflow. Taking NVDLA for example,
RTLflow transpiles 511K lines of RTL to 560K lines of CUDA and C++
simulation code in about 30 seconds. For large designs like NVDLA, it is
impractical for developers to rewrite all RTL code to CUDA manually. Our
transpiler is fully automatic, and the generated CUDA code can be used
out of the box for engineering and research purposes. Without RTLflow,
it becomes very difficult for simulation engineers to harness the power of
GPU computing using minimal programming effort.

65

#c
yc

les
10

K
10

0K
50

0K
De

sig
n

#s
tim

ul
us

Ve
ril

at
or

RT
Lfl

ow
Sp

ee
d-

up
Ve

ril
at

or
RT

Lfl
ow

Sp
ee

d-
up

Ve
ril

at
or

RT
Lfl

ow
Sp

ee
d-

up
25

6
1s

1s
1×

14
s

10
s

1.
4×

1m
3s

48
s

1.
3×

10
24

6s
1s

6×
52

s
10

s
5.

2×
4m

2s
50

s
4.

8×
Sp

in
al

40
96

23
s

2s
11

.5
×

3m
25

s
14

s
14

.6
×

15
m

50
s

1m
12

s
13

.2
×

16
38

4
1m

30
s

4s
22

.5
×

13
m

39
s

21
s

39
.0
×

1h
3m

50
s

1m
37

s
39

.5
×

65
53

6
4m

32
s

16
s

17
.0
×

52
m

18
s

1m
12

s
43

.6
×

4h
10

m
40

s
5m

22
s

46
.7
×

25
6

1m
2s

1m
10

s
0.8

9×
3m

48
s

8m
46

s
0.4

3×
15

m
16

s
41

m
37

s
0.3

7×
10

24
3m

58
s

1m
29

s
2.

7×
14

m
39

s
10

m
56

s
1.

3×
1h

31
m

31
s

53
m

1s
1.

7×
N

VD
LA

40
96

21
m

50
s

1m
46

s
12

.4
×

57
m

52
s

13
m

11
s

4.
4×

4h
1m

17
s

1h
2m

13
s

3.
9×

16
38

4
1h

22
m

47
s

2m
44

s
30

.3
×

6h
37

m
50

s
18

m
18

s
21

.7
×

22
h1

6m
38

s
1h

24
m

5s
15

.9
×

65
53

6
5h

31
m

14
s

8m
8s

40
.7
×

26
h3

1m
52

s
49

m
18

s
32

.3
×

89
h1

6m
22

s
3h

45
m

10
s

23
.8
×

Ta
bl

e3
.2:

Co
m

pa
ris

on
of

ela
ps

ed
sim

ul
ati

on
tim

es
be

tw
ee

n
Ve

ril
ato

r(
w

ith
80

CP
U

th
re

ad
s)

an
d

RT
Lfl

ow
(w

ith
on

eA
60

00
GP

U)
on

Sp
in

al
an

d
N

VD
LA

fo
rc

om
pl

eti
ng

25
6,

10
24

,4
09

6,
16

38
4,

an
d

65
53

6s
tim

ul
us

at
10

K,
10

0K
,a

nd
50

0K
clo

ck
cy

cle
s.

Al
ls

ig
na

lo
ut

pu
ts

m
atc

h
th

eg
ol

de
n

re
fer

en
ce

ge
ne

ra
ted

by
Ve

ril
ato

r.

66

Overall Performance Comparison

Table 3.2 compares the elapsed simulation times between Verilator (with 80
CPU threads) and RTLflow (with one A6000 GPU) on Spinal and NVDLA.
RTLflow outperforms Verilator using 80 CPU threads in almost all sce-
narios. With 65536 stimulus, RTLflow is 46.7× faster on Spinal at 500K
cycles and is 40.7× faster on NVDLA at 10K cycles. We can clearly see the
proposed GPU acceleration flow brings significant performance benefits
to simulate multiple stimulus simultaneously. Figure 3.12 shows runtime
comparisons across different hardware platforms for NVDLA with 16384
stimulus at 10K cycles. Compared to single-threaded Verilator, RTLflow
achieves 523× speed-up using one A6000 GPU. The significant perfor-
mance improvement demonstrates the promise of our multi-stimulus
simulation techniques.

Figure 3.12: Runtime comparisons across different hardware platforms for
NVDLA with 16384 stimulus and 10K cycles.

Figure 3.13 shows the runtime growth over increasing numbers of
stimulus for Verilator, ESSENT, and RTLflow on riscv-mini with 10K cycles.
When the number of stimulus is smaller than 1024, all simulators are able
to finish simulation in five seconds, and the advantage of GPU is not
pronounced compared to others with 80 threads. When the number of

67

21 23 25 27 29 211 213 215 217 219
10−2

10−1

100

101

102

103

104

stimulus

Ru
nt

im
e(

s)
riscv-mini (10K cycles)

RTLflow
Verilator
ESSENT

Figure 3.13: Runtime growth over increasing number of stimulus for
Verilator, ESSENT, and RTLflow on riscv-mini.

stimulus is larger than 1024, in which data parallelism becomes large,
RTLflow starts to scale better than Verilator and ESSENT. For instance,
when increasing the number of stimulus from 4096 to 65536, the runtime
of RTLflow grows 4×whereas Verilator and ESSENT grow 102× and 66×,
respectively.

Absolute efficiency can be measured by the latency needed to complete
batch stimulus. Table 3.2 and Figure 3.13 provide some insight: When the
number of stimulus is small (e.g., <256), RTLflow does not benefit from
much data parallelism and thus CPU-based Verilator is better. However,
industrial simulators can easily call many thousands of stimulus where
RTLflow (GPU) wins out. The break-even points can be observed in

68

Table 3.2 for Spinal and NVDLA (256 and 1024 stimulus, respectively).
Similar number is also observed in Figure 3.13 for riscv-mini.

Performance Result of GPU Task Graph

Table 3.3 compares the runtime between RTLflow with and without
GPU-aware partitioning algorithm (RTLflow−g). For RTLflow, we ob-
tain weight_sum by running 150 MCMC sampling iterations where each
iteration evaluates the candidate partition (compile + run) using 256
stimulus and 3K cycles. We do not observe much difference beyond this
number. Then, we use the weight vector to run different scenarios of cycle
and stimulus combinations. For RTLflow−g, we use the default partition-
ing algorithm in Verilator that hard codes weights [20]. We can clearly
see the performance advantage of our GPU-aware partitioning algorithm.
RTLflow speeds up RTLflow−g in all scenarios with up to 5.8%. Our al-
gorithm generates a better partitioned GPU task graph by performing
estimates in real operating conditions. The result also highlights that
our algorithm achieves predictable performance for different cycle and
stimulus numbers.

4096 stimulus 16384 stimulus
#Cycles RTLflow−g RTLflow RTLflow−g RTLflow

10K 110.3s 106.8s (↑3.3%) 170.1s 163.5s (↑4%)
50K 428.9s 405.4s (↑5.8%) 611.9s 587.3s (↑4.2%)

100K 813.1s 791.0s (↑2.8%) 1145.2s 1098.2s (↑4.3%)
Table 3.3: Runtime comparison in terms of improvement (↑) be-
tween RTLflow with and without GPU-aware partitioning algorithm
(RTLflow−g) for NVDLA with 4096 and 16384 stimulus at 10K, 50K, 100K
cycles.

Figure 3.14 shows partial RTL task graphs partitioned for Spinal with
and without our GPU-aware partitioning algorithm. Based on our obser-
vation, our algorithm attempts to find a partition of many parallel tasks,

69

which in turn maximizes the kernel concurrency of the induced CUDA
graph. For instance, the task graph in (b) implies many concurrent kernels
at a specific level (e.g., task_B, task_D, task_G, task_C, task_E, task_F)
that results in a better performance of CUDA Graph execution than (a).

To further demonstrate the effectiveness of CUDA Graph, we imple-
ment a stream-based execution algorithm to execute the CUDA graph.
Specifically, we implement the state-of-the-art CUDA Graph transforma-
tion algorithm [72] to capture a CUDA graph using streams and events
while maximizing the kernel concurrency. We use four streams to capture
the CUDA graph which achieves the best performance on our A6000 GPU.

Spinal NVDLA
#Cycles stream CUDA Graph stream CUDA Graph

10K 11.5s 2.3s (5×) 279.8s 106.5s (2.6×)
100K 108.0s 14.2s (7.6×) 2046.9s 791.2s (2.6×)
500K 532.9s 72.3s (7.4×) 9718.0s 3733.0s (2.6×)

Table 3.4: Performance advantage of CUDA Graph execution in multi-
stimulus simulation workloads, measured on Spinal and NVDLA with
4096 stimulus under different numbers of cycles.

Table 3.4 shows performance advantage of CUDA Graph execution in
multi-stimulus simulation workloads. We can clearly see the advantage of
CUDA Graph. The CUDA Graph-based approach outperforms the stream-
based counterpart in all scenarios. For instance, CUDA Graph reaches
the goal 7.4× and 2.6× faster than stream with 500K cycles for Spinal and
NVDLA, respectively. Compared with the stream-based approach, CUDA
Graph launches all dependent GPU tasks in the CUDA graph through a
single CPU call per cycle, thus largely reducing the kernel call overheads.
Also, the CUDA runtime can perform whole-graph optimizations to sched-
ule a CUDA graph without repetitively launching streams and events to
build up the dependency graph that is consistent across all cycles.

70

Figure 3.14: Partial RTL task graphs for Spinal with and without our GPU-
aware partitioning algorithm. Each task is a GPU kernel that evaluates
the design with batch stimulus.

Performance Result of Pipeline Scheduling

In this section, we study the performance benefit of our pipeline schedul-
ing. Table 3.5 compares the runtime between RTLflow with and without

71

Spinal NVDLA
#Stimulus RTLflow−p RTLflow RTLflow−p RTLflow

4096 14.7s 12.4s (↑19%) 801.2s 791.2s (↑1%)
16384 27.4s 21.4s (↑28%) 1399.2s 1098.0s (↑27%)
65536 113.8s 72.5s (↑57%) 5281.0s 2957.8s (↑79%)

Table 3.5: Runtime comparison in terms of improvement (↑) between
RTLflow with and without pipeline scheduling (RTLflow−p) for Spinal
and NVDLA with 100K cycles at different numbers of stimulus.

212 213 214 215 216

100

75

#StimulusGP
U

ut
ili

za
tio

n
ra

te
(%

) Spinal (10K cycles)

RTLflow
RTLflow−p

212 213 214 215 216

100

75

50

#StimulusGP
U

ut
ili

za
tio

n
ra

te
(%

) NVDLA (10K cycles)

RTLflow
RTLflow−p

Figure 3.15: Comparison of GPU utilization between RTLflow with and
without pipeline scheduling (RTLflow−p) for simulating Spinal and
NVDLA with different numbers of stimulus (under 10K cycles).

pipeline (RTLflow−p) at different numbers of stimulus. For fairness pur-
pose, we use OpenMP to parallelize set_inputs task in RTLflow−p, and
both methods use the same MCMC partitioning algorithm. Compared
to RTLflow−p, RTLflow is faster at all numbers of stimulus (up to 79%).
The performance gap continues to enlarge as we increase the number of
stimulus. Without our pipeline scheduling, RTLflow−p requires a GPU to
wait until CPU threads set inputs for all stimulus per cycle. The induced
serialization overhead becomes significant as the number of stimulus in-
creases.

Figure 3.15 plots the average GPU utilization rate profiled by Nvidia
System Management Interface [73]. RTLflow achieves nearly 100% GPU
utilization rate across all numbers of stimulus on both Spinal and NVDLA,

72

whereas RTLflow−p suffers from lower utilization rate as the number of
stimulus increases. Our pipeline scheduling enables RTLflow to asyn-
chronously dispatch a group of batch stimulus to GPU, thus keeping GPU
highly utilized during the entire simulation.

Figure 3.16 plots the utilization timeline of RTLflow−p and RTLflow
using the data extracted from Nvidia Nsight Systems [3]. The timeline
of CPU threads and GPU in RTLflow is much more overlapped than
RTLflow−p. Since our pipeline scheduling processes batch stimulus in
groups, GPU does not need to wait for CPU threads to set inputs for all
stimulus at each cycle. We also observe high CPU and GPU utilization
rates on RTLflow. This is because our pipeline scheduling further explores
inter-stimulus parallelism to enable efficient overlap between CPU and
GPU.

3.6 Conclusion
In this chapter, we have introduced RTLflow, a GPU acceleration flow
to speed up RTL simulation with batch stimulus. RTLflow transpiles
the given RTL simulation code to C++ and CUDA, and combines GPU-
aware partitioning algorithm with modern CUDA Graph parallelism to
efficiently run multiple stimulus on partitioned RTL tasks. Our transpiler
prevents designers from manually writing GPU kernels for simulating
RTL processes and hence largely improves their productivity. To fur-
ther enable effective computation overlaps between CPU and GPU, we
have introduced a pipeline scheduling algorithm to explore inter-stimulus
parallelism. We have evaluated RTLflow on industrial designs and demon-
strated its promising performance compared to the industrial-strength RTL
simulators, Verilator and ESSENT. For instance, RTLflow on one A6000
GPU outperforms 10 instances of Verilator each running 8 threads (a total
of 80 CPU threads) with up to 40× on the NVDLA of 65536 stimulus. We

73

(a) without pipeline scheduling

CPU

GPU

(b) with pipeline scheduling

CPU

GPU

1ms

Figure 3.16: A snapshot of utilization timeline for RTLflow with and
without pipeline scheduling, reported by Nvidia Nsight Systems [3].

have made RTLflow open-source to benefit the simulation community. In
this work, Dian-Lun Lin was the primary contributor, responsible for the
majority of the research and development efforts. Haoxing Ren, Yanqing
Zhang, Brucek Khailany, and Tsung-Wei Huang supervised the research,
providing guidance and oversight throughout the project. All authors
participated in discussing the results and contributed to the preparation
and review of the final manuscript.

74

4 genfuzz: gpu-accelerated hardware fuzzing
using genetic algorithm with multiple inputs

4.1 Abstract
Hardware fuzzing has emerged as a promising automatic verification tech-
nique to efficiently discover and verify hardware vulnerabilities. However,
hardware fuzzing can be extremely time-consuming due to compute-
intensive iterative simulations. While recent research has explored several
approaches to accelerate hardware fuzzing, nearly all of them are limited
to single-input fuzzing using one thread of a CPU-based simulator. As a
result, we propose Gen-Fuzz, a GPU-accelerated hardware fuzzer using a
genetic algorithm with multiple inputs. Measuring experimental results
on a real industrial design, we show that GenFuzz running on a single
A6000 GPU and eight CPU cores achieves 80× runtime speed-up when
compared to state-of-the-art hardware fuzzers.

4.2 Introduction
The ever-increasing complexity of hardware design has put significant
strain on System-on-Chip (SoC) designers and system integrators to detect
and evaluate hardware vulnerabilities within the design stage [28, 29, 4].
As SoC complexity continues to grow, industry-quality functional veri-
fication signoff typically requires a significant and growing amount of
engineering effort to generate and simulate many thousands of test cases
on the same Design-Under-Test (DUT) for converging on coverage clo-
sure and avoiding bug escape from corner cases. Much research over
the past decades has focused on automatic constrained random verification
(CRV) [32] to relieve the increasing strain for hardware engineers. CRV
tests a DUT by randomly combining manually-defined inputs (i.e., instruc-

75

tions plus compiled RTL stimulus) into transaction sequences. However,
since CRV relies only on randomly generated inputs, it suffers from zero
knowledge of coverage and becomes inefficient when verifying large de-
signs.

Coverage-guided verification, also known as hardware fuzzing, has
emerged as a promising automatic hardware verification technique to
efficiently discover and verify hardware vulnerabilities [28, 30]. Unlike
CRV that randomly combines inputs, hardware fuzzing generates inputs
by mutating previously interesting inputs (i.e., the inputs that increase
coverage) to effectively discover unknown hardware behaviors. However,
since this process requires time-consuming feedback analysis, hardware
fuzzing often takes hours or days to finish.

To alleviate the long runtime, recent research has explored several
approaches to speed up the single-input, single-threaded, per fuzzing
iteration time. RFUZZ [28] proposes a mux-coverage metric that treats the
select signal of each 2:1 multiplexer as a coverage point. However, RFUZZ
cannot scale to large designs since their runtime grows significantly as
the number of multiplexers increases. DirectFuzz [29] extends RFUZZ to
generate test inputs that maximize the coverage of a specific block. Com-
pared to RFUZZ, DirectFuzz can improve performance on small designs.
However, the speedup on complex designs is insignificant (e.g., 1.08× on
the Sodor1Stage RISC-V processor). Also, their work only targets RFUZZ’s
mux coverage and is not generalizable to other coverage metrics. DIFUZ-
ZRTL [30] introduces a reg-coverage metric to monitor value changes of
control registers connected to mux control signals. While DIFUZZRTL’s
reg coverage shows capability for large designs, their fuzzing technique
requires many hours or days to achieve high coverage.

TheHuzz [31] explores processor states using multiple coverage met-
rics. However, it induces over 70% runtime overhead when collecting
coverage data since it must access multiple metrics per fuzzing iteration.

76

Hw-Fuzzing [32] converts a hardware-description-language (HDL) model
into an equivalent software model using Verilator, and performs fuzzing
on the software code using software coverage metrics. Although it shows
software coverage metrics are comparable with HDL line coverage, other
hardware coverage metrics such as finite-state-machine (FSM) coverage
cannot be easily added. Other research has leveraged FPGAs to accelerate
hardware fuzzing [30, 28]. However, there are three drawbacks of FPGA-
based hardware fuzzing: 1) It suffers from a complicated compilation
setup. 2) It does not provide visibility to internal signals, complicating bug
detection. 3) Instrumenting a design on an FPGA is challenging[30, 28].

!""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""!"""""""""""""""""""!""

#"""""""""""""""""""#"""""""""""""""""""""#"""""""""""""""""""""#"""""""""""""""""""#$%&'()*

+,-.."""""/0123),(44 /%,-..+56""""5728(44 89:,(440&;"""""#$%&'((

<=-
*0&;>2

)712?@

*0&;>2

)712?@

*0&;>2

)712?@

*0&;>2

)712?@

*0&;>2

)712?@

)'*+,-*$

+./$012

A=-

B !""""""""""""""""""""B""""""""""""""""""""!""""""""""""""""""!"""""""""""""""""""!,=AC

)'*+,-*$

Figure 4.1: Comparison between GenFuzz and existing hardware fuzzers.

While all these approaches have shown coverage or runtime improve-
ments, nearly all of them are limited to single-input fuzzing using one thread
of simulation on a CPU architecture. Recently, RTL simulation research has
achieved significant performance improvement by leveraging GPUs to
simulate multiple inputs simultaneously [4]. This result inspires us to
accelerate hardware fuzzing by exploring data parallelism, which we refer
to as multi-input hardware fuzzing, using CPU-GPU heterogeneous comput-
ing. However, multi-input hardware fuzzing is extremely challenging for
three reasons. Firstly, existing works focus on speeding up single-input
fuzzing using sequential mutation frameworks. Multi-input hardware
fuzzing requires a new CPU-GPU task decomposition strategy to benefit
from heterogeneous parallelism. Secondly, multi-input hardware fuzzing

77

needs an effective mutation algorithm to find the best previous inputs as
seeds and generate multiple new inputs of interest. Lastly, fuzzing multi-
ple inputs in parallel can introduce inefficiencies from highly overlapped
coverage within a fuzzing iteration. We need to rule out unwanted inputs
that cause redundant overlaps.

To overcome these challenges, we propose GenFuzz, a GPU-accelerated
hardware fuzzer using a genetic algorithm (GA) with multiple inputs.
Figure 4.1 compares the key differences between GenFuzz and existing
hardware fuzzers. To the best of our knowledge, this is the first GPU-
accelerated hardware fuzzing using GA in the literature. We summarize
three key contributions as follows:

• We design an efficient multi-input hardware fuzzer to fuzz multiple
inputs simultaneously using both CPU and GPU parallelisms.

• We design an effective GA-based framework to iteratively produce
multiple inputs of interest that are most likely to extend the coverage.

• We design a novel coverage-maximization algorithm to avoid over-
lapped coverage for both inter- and intra- fuzzing iterations.

We have evaluated GenFuzz on real designs and demonstrated its
promising performance compared to the state-of-the-art DIFUZZRTL [30]
and RFUZZ [28]. GenFuzz using one A6000 GPU and eight CPU cores
outperforms DIFUZZRTL on single CPU thread with up to 80× speed-
up for BOOMCore design using reg coverage. We have also shown that
GenFuzz achieves 2.1×more coverage points when the same number of
instructions are fuzzed.

78

!"#$"%&#''%"()*+*%"
,%-.#/0"#1#"#/�

'23)-+*%"

4560

'23)-+*%"

7##.8+&90:;&%<#"+=#>0&%<#"+=#03+$>0#*&?@A%<#"+=#

3%/2*%"

!"#$%&

#''(

!""#$%&#$'&#$(

)*+ $,&#$-&#.

/0 $.&#-1$%,2

3

!""#$%&#$'&#$(

!"# $%&'(&')(

/0 $.&#-1$%,2

3

456)*+*/789:*5!;+9

!"#$%&'

A"%''B&C#&9

Figure 4.2: Conventional single-input hardware fuzzing flow.

4.3 Background

Conventional Hardware Fuzzing

Figure 4.2 shows the flow of conventional single-input hardware
fuzzing [30]. We start by randomly choosing one input from the input pool
that maintains a set of interesting inputs. The mutator generates a new
input by mutating instructions from the selected input. The preprocessor
compiles the input into a stimulus and an executable for simulation. De-
pending on different hardware fuzzers and coverage metrics, we may need
a reference simulator to validate an input. We then use an RTL simulator
to simulate the DUT with the mutated stimulus and collect the coverage
data. The input that discovers new hardware states (i.e., new coverage
points) is considered interesting and is saved back to the input pool for
future fuzzing. The fuzzing iteration continues until we cannot explore
new states for a maximum number of iterations. Finally, we use assertions
or cross-check RTL simulation results against results from the reference
simulator to detect bugs.

79

Genetic Algorithm

GA [74] is a search heuristic that reflects the process of natural selection.
The best individuals are selected to produce good offsprings for the next
generation. Listing 4.1 gives an example. The code wraps all individu-
als with a population and applies GA iteratively. A quantitative fitness
function evaluates the quality of each individual in each iteration. We
then select individuals with better fitness as parents to produce superior
offsprings. For each parent pair, we perform crossover to exchange genes
between parents to generate offsprings. The new offsprings become a new
population for the next GA iteration. The iteration continues until we
cannot find a better solution after a maximum number of iterations.
Population pop ; // c o n s t r u c t a population
Ind iv idua l s pars ; // c o n s t r u c t parents
Ind iv idua l s o f f s ; // c o n s t r u c t o f f s p r i n g s
pop . i n i t i a l i z e () ; // i n i t i a l i z e a population
while (i t e r < MAX_ITER) {

pop . c a c u l a t e _ f i t n e s s () . // c a l c u l a t e f i t n e s s
pars = pop . s e l e c t () ; // s e l e c t good parents
o f f s = pars . c rossover () ; // generate new o f f s p r i n g s
o f f s . mutate () ; // mutate to add d i v e r s i t y
pop . r e p l a c e (o f f s) ; // r e p l a c e old population

}

Listing 4.1: A common C++ genetic algorithm.

4.4 GenFuzz

Multi-input Hardware Fuzzing

At a high level, GenFuzz efficiently discovers new coverage by fuzzing
multiple inputs in parallel at each fuzzing iteration. Figure 4.3 shows
the overview of GenFuzz. We define the multi-input hardware fuzzing

80

Figure 4.3: Overview of GenFuzz.

workload as a parallel task dependency graph that iterates five stages: GA,
input processing, RTL simulation, cross-check and coverage maximization. At
the GA stage, GenFuzz incorporates three GA processes, selection, crossover,
and mutation, to generate inputs that are most likely to extend coverage.
Based on the results from the previous fuzzing iteration, we select the
best inputs as parents to generate new inputs. The input processing stage
involves CPU-intensive tasks including the compilation of simulation
inputs and file I/O. Without data parallelism, RTL simulation needs to
wait until we process all inputs, thus incurring significant overhead. To
improve runtime performance, we evenly distribute inputs across different
CPUs to process each input in parallel.

We integrate the state-of-the-art RTL simulator, RTLflow [4], into Gen-
Fuzz to enable GPU acceleration for multi-stimulus RTL simulation. Un-
like existing hardware fuzzers that typically use Verilator or ModelSim to
simulate one stimulus at a time, RTLflow achieves high-throughput RTL
simulation by running multiple stimuli in parallel using GPU. After the
RTL simulation, we cross-check results derived from the reference simu-

81

lator and RTLflow. We do not parallelize cross-check since this stage is
fast (e.g., a few seconds to finish). Our coverage-maximization algorithm
scores each input by analyzing the feedback of each input. Finally, we
send each input with its fitness to GA for selection. The fuzzing iteration
continues until GA cannot find new coverage after a maximum number of
iterations.

GA-based Framework

!"#"

$#%&'&%()*

+,(*"--"./0""*1

2"*"3-&,#

4.5,&#-167,88,'"7

9(-)-&,#

)%%174:17;:17<
=(* 7>:17?:1@

8A 7@:1?B74>C

D&-#"88E1>;

D&-#"88E1;
D&-#"88E144

D&-#"88E1;?

8**& 7F:17F:14F
G)*7 7?:1HB7IC

)%%174:17;:17<

=(* 7>:17?:1@

8A 7@:1?B74>C

D&-#"88E1>; D&-#"88E1;?

8**& 7F:17F:14F

G)*7 7?:1HB7IC

)%%174:17;:17<
=(* 7>:17?:1@

8A 7@:1?B74>C

8**& 7F:17F:14F
G)*7 7?:1HB7IC

)%%174:17;:17<

G)*7 7?:1HB7IC

8**& 7F:17F:14F
=(* 7>:17?:1@

8A 7@:1?B74>C

*)174:1%J>J>

$#5(-15,,*

K,7 7?:17?:17@!

2"*"3-&,#17)-"E !!
"
"

#!

$
"#$
% #"

)%%174:17;:17<

J7"5*)3"

J%"*"-"
=(* 7>:17?:1@

8A 7@:1?B74>C

J"7-

)%%174:17;:17<

!"# #$%&#$%&#'

=(* 7>:17?:1@

8A 7@:1?B74>C

()* !$%&$

L)7"#-

67,88,'"717)-"E1!% " #$%

Figure 4.4: Overview of our GA-based fuzzing framework.

The goal of our GA-based framework is to produce new inputs that
can maximally extend coverage using results from the previous fuzzing
iteration. Our GA consists of selection, crossover, and mutation. Unlike
existing mutation approaches that only select one input to mutate, our GA

82

framework exchanges interesting instructions between two parents and
passes instructions to newborn inputs. Furthermore, we adopt variable-
length individual representation. Each input can have a different number
of instructions, allowing us to efficiently explore coverage on the time
dimension.

Figure 4.4 shows the overview of our GA-based framework. Each gene
represents an instruction, and each individual consists of multiple genes
to form an input. Our GA framework can be applied to arbitrary coverage
metrics and inputs. For example, to perform fuzzing on the RTL level
using mux coverage [28], we can map the input value of each input pin
as a gene. Each individual thus concatenates multiple genes to form a
stimulus. Since the mux coverage is collected after RTL simulation, it can
be transformed to fitness for the selection process.

Selection

The selection process chooses individuals with higher fitness from the
input pool for later reproduction. We apply Roulette-Wheel Selection
(RWS) for our framework such that the probability of choosing an individ-
ual is proportional to its fitness. Compared to truncation selection which
directly eliminates a fixed percentage of the weakest candidates, RWS can
still select individuals with lower fitness to create more diversity and to
avoid quick convergence. We define the selection rate PI

s of input I as
PI
s =

fI∑n
j=1 fj

where fI is the fitness of input I and n is the number of input.

Crossover

The crossover process allows parents to exchange instructions for pro-
ducing the next generation of individuals. We choose two parents from
selected individuals and apply one-point crossover. Since individuals can
have different lengths of genes, we randomly choose a crossover point
based on the parent with smaller length. As shown in Figure 4.4, genes

83

of both parents after the crossover point (red line) are interchanged. We
choose a crossover rate Pc = 0.5 to randomly determine whether two
parents occur crossover. If crossover does not happen, the two parents are
considered as newborn inputs and passed into the mutation process.

Mutation

The mutation process provides a mechanism for newborn inputs to escape
from local regions and to create more diversity. During the mutation
phase, we iterate each gene in an individual and decide if the gene is mu-
tated using the mutation rate Pm. Our mutation contains three operators:
insert, delete, and replace as shown in Figure 4.4. Once mutation occurs, we
randomly choose one operator to mutate the gene.

The mutation rate Pm plays an important role in the mutation process.
If the mutation rate is minimal, there will be too many similar individuals.
On the other hand, having a large mutation rate can easily direct GA
toward random search. To have a better mutation rate for effective GA
search, we use a time-dependent mutation rate proposed by [74]:

Pm =

{
0.6

[
1 − (tT)

2] , 0 ⩽ t ⩽ 0.2T
0.2

[
0.1(t−T

T)2]+ 0.05, 0.2T < t ⩽ T

where T is the total number of fuzzing iterations and t is the tth iteration.

Coverage-Maximization Algorithm

Multi-input hardware fuzzing can introduce inefficiencies due to highly
overlapped coverage within a fuzzing iteration. Moreover, selecting inputs
with large overlap as parents causes newborn inputs to inherit the same
overlap. The overlap grows significantly as we increase the number of
fuzzing iterations. To overcome this problem, a greedy solution is to find
the top-k inputs based on the maximum coverage problem, defined as
follows:

84

Definition 4.1. Let {Ij}nj=1 be the sequence of inputs where Ij is the j−th input
and n is the number of these inputs. Let C(Ij) represent the set of coverage
discovered by input Ij. Then, given a positive number k ⩽ n, the goal of the
maximum coverage problem is to find a subsequence {Ijl}kl=1 = {Ij1 , Ij2 , ..., Ijk},
called the top-k inputs in {Ij}

n
j=1, such that their total coverage |

⋃k
l=1 C(Ijl)| is

maximized.

Unfortunately, this problem is NP-hard [75]. Also, existing greedy
algorithms that choose one input with the largest uncovered coverage
at a time cannot be used out of the box. Specifically, after selecting the
best input, greedy algorithms require remaining inputs to re-calculate
uncovered coverage by iterating all coverage for each input. The time
complexity of greedy algorithms is thus O((cov_size∗n)2) where cov_size
is the coverage size in a design and n is the number of inputs per fuzzing
iteration. Since the number of coverage points is in the millions for large
designs, such greedy algorithms are extremely time-consuming.

To reduce the time complexity, we introduce two coverage metrics, delta
and progressive coverage, as fitness for GA to select inputs:

Definition 4.2. The delta coverage Cd(Ij) measures how much new coverage
is discovered by Ij compared to the total coverage explored in previous fuzzing
iterations.

Definition 4.3. The progressive coverage Cp(Ij) measures how much new cover-
age is discovered by Ij compared to the total coverage explored by all inputs before
Ij.

Figure 4.5 shows an example of calculating delta and progressive cov-
erage for two inputs I1, I2. We represent the total explored coverage at
iteration t− 1 by Ct−1 and the coverage of input Ij at iteration t by Ct

j .
Since all inputs before the first input are in previous fuzzing iterations,

Cd(I1) = Cp(I1) are both given by taking the complement of Ct−1 w.r.t. Ct
1.

85

Figure 4.5: The proposed progressive coverage and delta coverage calcu-
lation. The progressive coverage and delta coverage of the first input is
identical.

Similar to Cd(I1), we calculate Cd(I2) by taking the complement of Ct−1

w.r.t. Ct
2. On the other hand, we take the union of Ct−1 and Ct

1 to get the
total coverage explored by all the inputs before I2. Finally, we calculate
Cp(I2) by taking the complement of Ct−1 ∪ Ct

1 w.r.t. Ct
2.

Based on our delta and progressive coverage metrics, we define the
fitness function as follows:

Fitness(Ij) = Norm(Cd(Ij)) +Norm(Cp(Ij))

where Norm represents mix-max normalization that transforms two cov-
erage metrics to the same scale.

Algorithm 4 shows our coverage-maximization algorithm. Each in-
put owns a coverage map of size cov_size to record its coverage. The
total_cov_map represents total coverage by taking a union of all inputs.
In the beginning, we initialize total_cov and total_cov_map by using

86

Algorithm 4: Coverage-maximization algorithm
Input: NUM_INPUTS: Number of inputs
Input: COV_SIZE: Coverage size
Input: prev_total_cov: Total coverage at previous iter
Input: prev_total_cov_map: Total coverage map at previous iter
Input: cov_maps: Array of coverage maps
Output: total_cov: Total coverage
Output: total_cov_map: Total coverage map
Output: fitness: Array of fitness

1 delta_covs.initialize(0)
2 prog_covs.initialize(0)
3 total_cov← prev_total_cov
4 total_cov_map← prev_total_cov_map
5 i, c← 0

/* delta coverage caculation */
6 while i++ < NUM_INPUTS
7 while c++ < COV_SIZE
8 result← cov_maps[i][c]
9 prev_result← prev_total_cov_map[c]

10 if prev_result == 0 and result == 1 then
11 delta_covs[i] + +
12 end
13 end
14 end
15 i, c← 0

/* progressive coverage calculation */
16 while i++ < NUM_INPUTS
17 while c++ < COV_SIZE
18 result← cov_maps[i][c]
19 prev_result← total_cov_map[c]
20 if prev_result == 0 and result == 1 then
21 total_cov_map[c] = 1
22 prog_covs[i] + +
23 total_cov++

24 end
25 end
26 end
27 min_max_norm(delta_covs, prog_covs)
28 i← 0
29 while i++ < NUM_INPUTS
30 fitness[i]← delta_covs[i] + prog_covs[i]
31 end

87

coverage explored in previous fuzzing iterations (lines 3-4). During delta
coverage calculation, each input iterates its coverage map and compares
coverage results with prev_total_cov_map (lines 6-14). If an input dis-
covers a new coverage that was not explored in previous fuzzing iterations,
we increment the delta coverage of the input by one (lines 10-12). During
progressive coverage calculation, each input iterates its coverage map again
and compares coverage results with total_cov_map (lines 16-26). If an
input discovers a new coverage that was not toggled in total_cov_map,
we increment the progressive coverage of the input and total_cov by
one (lines 22 and 23). Also, we toggle the corresponding coverage in
total_cov_map to one (line 21). In this case, the next input that discov-
ers the same coverage cannot increment its progressive coverage. After
coverage calculation, we normalize both delta and progressive coverage
(line 27). Finally, we calculate the fitness for each input by summing up
its delta and progressive coverage (lines 29-31). We can clearly see the
time complexity of our algorithm is O(cov_size ∗ n).

4.5 Experimental Results
We conducted our experiments on a 64-bit CentOS Linux machine with
one NVIDIA RTX A6000 GPU and eight Intel i7-11700 CPU cores at 2.5
GHz. We compiled our programs with CUDA NVCC 11.6 on a GCC 8.3.0
host compiler and enabled optimization flag -O3 and C++17 standard
-std=c++17. Each fuzzing iteration has an input size of 1024. For each run,
we used 1024 GPU threads for RTL simulation and 8 CPU cores for all host
operations. We used Taskflow [34, 72] to parallelize our task dependency
graph. All data is an average of five runs.

We consider two state-of-the-art hardware fuzzers, RFUZZ [28] and
DIFUZZRTL [30], as our baselines. RFUZZ and DIFUZZRTL each pro-
posed coverage metrics (i.e., mux coverage and reg coverage) to measure

88

the number of discovered design states. We compare GenFuzz with each
fuzzer using their coverage metrics. DIFUZZRTL performs fuzzing on its
CPU input format at the instruction level. It combines several instructions
into a word and performs per-word mutations. On the other hand, RFUZZ
directly fuzzes at the RTL level. It concatenates all input pins as an input
vector to represent input values in one test cycle. To explore coverage on
the time dimension, it further concatenates several single-cycle stimuli to
form a multi-cycle stimulus. For a fair comparison, we perform fuzzing
at the same level as DIFUZZRTL and RFUZZ. We use Verilator as the
RTL simulator for RFUZZ and DIFUZZRTL. For single-input hardware
fuzzing, RTLflow is slower than Verilator due to little data parallelism [4].
To demonstrate our efficiency, we evaluate GenFuzz on five real designs,
BoomCore1, BoomCore2, RocketCore, Sodor3Stage, and Sodor5Stage, pro-
vided by RFUZZ and DIFUZZRTL.

89

Ru
nt

im
e(

s)
fo

ra
ch

iev
in

gK
%

#C
ov

er
ag

e
K=

50
K=

70
K=

10
0

Be
nc

hm
ar

k
Ve

ril
og

LO
C

#C
ov

er
ag

e
DI

FU
ZZ

RT
L

Ge
nF

uz
z

DI
FU

ZZ
RT

L
Ge

nF
uz

z
DI

FU
ZZ

RT
L

Ge
nF

uz
z

Ro
ck

etC
or

e
81

88
3

11
05

09
62

18
s

57
8s

(1
0.

8×
)

18
97

2s
12

16
s(

15
.6
×

)
17

28
00

s
28

35
s(

61
.0
×

)
Bo

om
Co

re
1

19
36

89
51

85
06

75
03

s
48

4s
(1

5.
5×

)
22

27
8s

11
80

s(
18

.9
×

)
17

28
00

s
21

60
s(

80
.0
×

)
Bo

om
Co

re
2

23
92

82
68

42
02

92
08

s
83

5s
(1

1.
0×

)
24

55
5s

14
28

s(
17

.2
×

)
17

28
00

s
26

90
s(

64
.2
×

)

Ta
bl

e4
.1:

Ov
er

all
pe

rfo
rm

an
ce

co
m

pa
ris

on
be

tw
ee

n
DI

FU
ZZ

RT
L

an
d

Ge
nF

uz
zo

n
di

ffe
re

nt
be

nc
hm

ar
ks

fo
ra

ch
iev

in
g5

0%
,7

0%
,a

nd
10

0%
co

ve
ra

ge
us

in
gr

eg
co

ve
ra

ge
.T

he
be

nc
hm

ar
ks

ta
tis

tic
ss

ho
w

Ve
ril

og
lin

es
of

co
de

(V
er

ilo
gL

OC
)a

nd
nu

m
be

ro
fa

ch
iev

ed
co

ve
ra

ge
(#

Co
ve

ra
ge

)b
yr

un
ni

ng
DI

FU
ZZ

RT
L

fo
r

48
ho

ur
s.

Bo
ld

tex
tr

ep
re

se
nt

ss
pe

ed
-u

p.

90

500 1,000 1,500 2,000

60

80

100

#Words (×K)

#C
ov

er
ag

e(
×

K)

RocketCore (Reg coverage)

GenFuzz
DIFUZZRTL

500 1,000 1,500 2,000
200

400

600

800

#Words (×K)

#C
ov

er
ag

e(
×

K)

BOOMCore1 (Reg coverage)

GenFuzz
DIFUZZRTL

0 5 10 15 20

200

250

300

350

#Cycles (×K)

#C
ov

er
ag

e

Sodor3Stage (Mux coverage)

GenFuz
RFUZZ

0 5 10 15 20
200

250

300

350

400

#Cycles (×K)

#C
ov

er
ag

e

Sodor5Stage (Mux coverage)

GenFuz
RFUZZ

Figure 4.6: Comparison of coverage throughput among GenFuzz, DI-
FUZZRTL, and RFUZZ on RocketCore, BOOMCore, Sodor3Stage, and
Sodor5Stage. The x-axis uses the number of words and the number of
cycles.
Overall Performance Comparison

Table 4.1 compares the overall runtime between GenFuzz and DIFUZZRTL
on RocketCore, BoomCore1, and BoomCore2. We run DIFUZZRTL for 48
hours to derive the total number of coverage (#Coverage), and compare
runtime of GenFuzz and DIFUZZRTL for achieving 50%, 70%, and 100%
#coverage. GenFuzz outperforms DIFUZZRTL in all scenarios. For achiev-
ing 100% #coverage, GenFuzz is 61× faster on RocketCore and is 80× faster
on BOOMCore1. The significant improvement on runtime demonstrates
the promise of our multi-input hardware fuzzing techniques. The speedup
of achieving 100% #coverage is larger than 50% and 70% #coverage. When
discovered coverage becomes large, the coverage of DIFUZZRTL starts
to saturate. On the other hand, our genetic algorithm keeps finding new
inputs of interest and thus efficiently increases the coverage. Figure 4.6

91

compares the coverage throughput among GenFuzz, DIFUZZRTL, and
RFUZZ on different designs. To demonstrate the efficiency of coverage
throughput, we use the number of words and cycles as the x-axis for dif-
ferent coverage metrics. Compared to DIFUZZRTL using reg coverage,
GenFuzz achieves 2.1× speed-up using the same amount of words. The
throughput gap continues to grow as we increase the number of inputs.
Compared to RFUZZ using mux coverage, GenFuzz achieves 1.6× speed-
up using the same amount of cycles. The number of coverage quickly
saturates since both Sodor3Stage and Sodor5Stage are small designs that
do not have many coverage points to discover.

Performance Result of Coverage-maximization Algorithm

0 10 20 30 40 50

200

400

600

800

#Iterations

#C
ov

er
ag

e(
×

K)

BOOMCore1

GenFuzz
GenFuzzr

GenFuzz−cm

0 10 20 30 40 50
0

200

400

600

800

1,000

#Iterations

#C
ov

er
ag

e(
×

K)

BOOMCore2

GenFuzz
GenFuzzr

GenFuzz−cm

Figure 4.7: Coverage growth over increasing numbers of iterations for
GenFuzz, GenFuzz with mutation rate Pr = 1 (GenFuzzr), and GenFuzz
without coverage-maximization algorithm (GenFuzz−cm) on BOOMCore
using reg coverage with 256 inputs.

In this section, we study the performance benefit of our coverage-
maximization algorithm. Figure 4.7 shows total coverage over increasing
numbers of fuzzing iterations for GenFuzz, random (GenFuzzr), and
GenFuzz without coverage-maximization algorithm (GenFuzz−cm). In
GenFuzzr, we set the mutation rate to 1 to achieve random testing. In
GenFuzz−cm, each input uses the coverage number achieved by itself as

92

fitness. We can clearly see the performance advantage of our coverage-
maximization algorithm. GenFuzz achieves a higher coverage number
than other implementations in almost all scenarios. The performance
gap continues to enlarge as we increase the number of fuzzing itera-
tions. Without our coverage-maximization algorithm, both GenFuzzr and
GenFuzz−cm fail to distinguish overlapped coverage within each fuzzing
iteration, thus misguiding GA to select inputs that are less likely to ex-
tend coverage. The coverage growth of GenFuzz−cm is even slower than
GenFuzzr because GenFuzz−cm does not consider coverage improvement
at each fuzzing iteration. GA converges within 20 iterations and hardly
discovers new coverage points.

Runtime Breakdown of GenFuzz

Figure 4.8: Runtime breakdown of GenFuzz on BoomCore1.

Figure 4.8 shows the runtime breakdown of GenFuzz on BoomCore1
with 256 and 1024 inputs where GA, IP, CA, CC, and RS represent the
genetic algorithm, input processing, coverage-maximization algorithm,
cross-check, and RTL simulation components, respectively. The majority
of the runtime (>80%) is taken by RS. Both GA and CA only take <6%
runtime of the entire flow. Taking 1024 inputs as an example, CA only
takes 21 seconds to finish. Without our coverage-maximization algorithm,

93

Table 4.2: Runtime Comparison for finding bugs in BOOMCore between
DIFUZZRTL and GenFuzz.

Bug ID DIFUZZRTL GenFuzz
Issue #492 20.3h 1027s (71.1×)
Issue #567 ✗ 854s

existing greedy algorithms require cov_size ∗ n ∗ 21 seconds to finish,
where cov_size is typically millions in large designs.

Bug Detection

Table 4.2 compares the runtime of GenFuzz and DIFUZZRTL for finding
bugs in the BoomCore1 [76]. We derive DIFUZZRTL runtime results from
the paper. Compared to DIFUZZRTL, GenFuzz achieves 71.1× speed-
up to find Issue #492. Furthermore, GenFuzz can find Issue #567 not
discovered by DIFUZZRTL.

4.6 Conclusion
In this chapter , we have introduced GenFuzz, a GPU-accelerated hardware
fuzzer using a novel genetic algorithm to speed up hardware fuzzing with
multiple inputs. GenFuzz introduces a multi-input hardware fuzzer, a ge-
netic algorithm-based framework, and a coverage-maximization algorithm
to accelerate hardware fuzzing to a new performance milestone. Measur-
ing experimental results on real industrial designs, GenFuzz achieves up
to 80× runtime speed-up when compared to DIFUZZRTL and RFUZZ. In
this work, Dian-Lun Lin was the primary contributor, responsible for the
majority of the research and development efforts. Haoxing Ren, Yanqing
Zhang, Brucek Khailany, and Tsung-Wei Huang supervised the research,
providing guidance and oversight throughout the project. Shih-Hsin Wang

94

assisted in developing the theoretical proof for the coverage-maximization
algorithm. All authors participated in discussing the results and con-
tributed to the preparation and review of the final manuscript.

95

5 tarortl: accelerating rtl simulation using
coroutine-based heterogeneous task graph
scheduling

5.1 abstract
RTL simulation is critical for validating hardware designs. However, RTL
simulation can be time-consuming for large designs. Existing RTL simu-
lators have leveraged task graph parallelism to accelerate simulation on
a CPU- and/or GPU-parallel architecture. Despite the improved perfor-
mance, they all assume atomic execution per task and do not anticipate
multitasking that can bring significant performance advantages. As a
result, we introduce TaroRTL, a coroutine-based task graph scheduler for
efficient RTL simulation. TaroRTL enables non-blocking GPU and I/O
tasks within a task graph, ensuring that threads are not blocked waiting
for GPU or I/O tasks to finish. It also designs a coroutine-aware work-
stealing algorithm to avoid unnecessary context switches. Compared to
a state-of-the-art GPU-accelerated RTL simulator, TaroRTL can further
achieve 40–80% speed-up while using fewer CPU resources to simulate
large industrial designs.

5.2 Introduction
The time-consuming nature of Register-transfer level (RTL) simulation
poses a significant challenge for verifying today’s highly complex SoCs,
processors, and accelerators [4, 60, 33]. As SoC complexity continues to
grow, achieving industry-quality functional verification signoff typically
demands a significant and growing amount of simulation tests on the same
Design-Under-Test (DUT) with different input stimuli, all in preparation

96

for tapeout. For a comprehensive analysis of the design’s behavior, SoC
designers even require a Value-Change-Dump (VCD) file, resulting in sub-
stantial long runtime associated with input and output (I/O) operations
to capture and process traces [77]. Speeding up RTL simulation is crucial
for coping with the rapidly increasing design complexity and the shorter
time-to-market demands.

State-of-the-art RTL simulators have leveraged task graph parallelism to
accelerate simulation on a CPU- and/or GPU-parallel architecture [20, 33,
4]. This task graph consists of various tasks performed per simulation
cycle, such as evaluating logic elements, setting inputs, or I/O VCD dump.
Through task graph scheduling, multiple tasks can be scheduled and
executed concurrently once the dependency constraints are met. To name
a few state of the art: Verilator [20] is an open-source RTL simulator that
has been widely used in both academic and industrial projects. They group
adjacent logic elements into a set of macro tasks and dependencies. This
macro task graph is scheduled using a static multi-threaded scheduling
algorithm. Despite improved performance, the result has largely plateaued
at 8-10 CPU cores. RepCut [33] cuts the circuit into balanced partitions
with small overlaps. Their task graph scheduling reduces synchronization
and achieves superlinear speed-up by removing inter-task dependencies
with replication. However, RepCut has been limited to strong scaling
of a single input stimulus and does not consider weak scaling of multi-
stimulus simulation. To further improve the throughput performance,
RTLflow [4] runs many independent input stimuli in parallel on a GPU.
They incorporate a heterogeneous set of tasks (i.e., CPU and GPU) within
a task graph and schedule them using a work-stealing algorithm [12].
However, RTLflow requires a CPU thread to wait for GPU tasks to finish
per simulation cycle, resulting in significant CPU waiting time.

97

D

A C

B

(a) RTL task graph

A

B
C

D

A

B
C

D

Blocking

Non-blocking

CPU
GPU
I/O

CPU
GPU
I/O

(b) Without multitasking

(c) With multitasking (Coroutine)
Time

Time

Figure 5.1: Performance comparison with
and without multitasking using one CPU
and one GPU. TaroRTL enables non-blocking
GPU and I/O tasks to improve total runtime.
The patterned rectangle represents the ker-
nel call overhead (GPU and I/O).

While all these ap-
proaches have shown
runtime or throughput
improvements, the perfor-
mance is far from optimal.
Specifically, existing task
graph scheduling solutions
for RTL simulation all
assume atomic execution
per task (i.e., a thread runs
or blocks until its assigned
task is complete) and do
not anticipate multitasking
that can reduce CPU wait-
ing time on awaiting GPU and I/O tasks to finish. For instance, Figure
5.1 shows an RTL task graph with different task types [4]. Without
multitasking as shown in (b), when a CPU thread invokes a GPU task
(task B) or an I/O task (task C), it will block until the task finishes.

Recently, the new C++20/23 standard has introduced Coroutine [78].
Coroutine offers a new mechanism for programming multitasking by
allowing suspension and resumption of a function from its running thread.
This mechanism has inspired us to design a new coroutine-based task
graph scheduling solution with significantly improved performance. As
shown in Figure 1(c), after invoking task B and task C, the CPU thread
suspends those tasks and multitask to task D without being blocked.
Compared to (b), using Coroutine enables better utilization of computing
resources and reduces the total runtime.

However, designing a coroutine-based task graph scheduler is very
challenging for three reasons. First, coroutines present a different execu-
tion mechanism compared to traditional function calls, primarily due to

98

their ability to suspend and resume execution at certain points rather than
executing to completion like traditional functions. This difference poses
challenges for existing task graph schedulers [20, 4, 33, 34, 72, 79], as they
are typically designed with the assumption of traditional function calls
and lack support for coroutine-specific features. Second, Coroutine’s sus-
pension and resumption ability requires a specially designed scheduling
algorithm to minimize the cost of context switches. Furthermore, a corou-
tine does not automatically resume after suspension; instead, it requires a
scheduler to track and control its execution. Managing and tracking the
execution status of each coroutine becomes complicated when dealing
with complex workloads.

To overcome these challenges, we introduce TaroRTL, an efficient
coroutine-based task graph scheduler for RTL simulation. We summarize
three key contributions as follows:

• We design a coroutine-based task graph scheduling model to enable
non-blocking GPU and I/O tasks within a task graph.

• We design a coroutine-aware work-stealing algorithm to avoid unneces-
sary context switches and cache misses.

• We design an execution control strategy to track and control the execu-
tion of each invoked GPU and I/O task.

We have evaluated TaroRTL on industrial designs and demonstrated its
promising performance compared to the state-of-the-art RTLflow (CPU-
and GPU-based) [4] and Verilator (CPU-based) [20]. As an example,
TaroRTL can speed up RTLflow by 40–80% while using fewer CPU re-
sources to simulate large industrial designs.

99

5.3 The Motivation of Using Coroutine in RTL
Simulation

Existing task graph scheduling solutions for RTL simulation all assume
atomic execution, resulting in significant CPU waiting time on awaiting
GPU and I/O tasks to finish. This problem prevents us from fully unleash-
ing the power of heterogeneous simulation. Figure 5.2 gives an example
of CPU waiting and active time growth over increasing input stimuli in
RTLflow [4] (CPU- and GPU-based). The CPU waiting time inevitably
reduces the overall efficiency of an RTL simulator, especially when simu-
lating a design with numerous input stimuli. The increasing CPU waiting
time over increasing number of input stimuli indicates untapped perfor-
mance potential within the RTL simulation. Furthermore, CPUs need to
keep spinning until GPU completes its task, wasting a lot of unnecessary
CPU resources.

1024 4096 16384

50
100
150

#Input stimuli

Ti
m

e(
s) CPU waiting time

CPU active time

Figure 5.2: CPU waiting and active time growth over increasing numbers
of input stimuli in RTLflow [4]. The relative ratio of waiting time gets
smaller as the number of input stimuli increases because a large number of
input stimuli induce a significant amount of CPU computation for setting
inputs.

Unlike a traditional function that runs to completion and returns a
value, a coroutine can be suspended and resumed at specific points without
losing its state. Specifically, modern C++ Coroutine allows a CPU thread
to suspend its current task and resume other tasks (i.e., multitasking)
while awaiting GPU or I/O operations to finish. This property makes

100

coroutines particularly useful for parallel RTL simulation. Listing 5.1
gives a CPU-GPU simulation example for simulating a design with two
input stimuli using Coroutine. The code simulate an input design dut
cycle by cycle with a scheduler s. At each cycle iteration, we first set the
inputs of dut using the given input stimulus (Line 5). When a CPU thread
offloads eval to GPU (Line 7 and 9), it can multitask to another input
stimulus for set_inputs. Without Coroutine, existing RTL simulators
such as RTLflow [4] require a CPU thread to wait for eval on GPU to
finish.

1 void sim(Stimulus& stim) {
2 Design dut ;
3 s i z e _ t c { 0 } ;
4 while (! dut . stop and c <= NUM_CYCLES) {
5 dut . s e t _ i n p u t s (stim , c) ;
6 dut . s e t _ c l o c k (0) ;
7 co_await dut . eval () ; // o f f l o a d to GPU and mult i task
8 dut . s e t _ c l o c k (1) ;
9 co_await dut . eval () ; // o f f l o a d to GPU and mult i task

10 c += 1 ;
11 }
12 }
13 i n t main () {
14 Scheduler s ;
15 S t imul i stim = g e t _ s t i m u l i () ; // get input s t i m u l i
16 s . emplace (sim , stim [0]) ; // emplace a sim task f o r stim 0
17 s . emplace (sim , stim [1]) ; // emplace a sim task f o r stim 1
18 s . schedule () ; // schedule the two sim t a s k s
19 return 0 ;
20 }

Listing 5.1: An example of RTL simulation using Coroutine. When
co_await, a CPU thread multitasks to another input stimulus. The sched-
uler needs to track and control the execution of each invoked task.

101

5.4 TaroRTL
At a high level, TaroRTL enables multitasking within a task graph through
Coroutine. We allow CPU threads to multitask without being blocked
by GPU or I/O tasks. We introduce a coroutine-aware work stealing to
minimize context switches. Our execution control strategy effectively
tracks and controls the execution of each GPU and I/O task.

Overview

Figure 5.3 shows an example of TaroRTL scheduling a task graph using
two CPU threads (workers), one GPU stream, and one I/O buffer. Each
worker maintains a high-priority queue (HPQ) and a low-priority queue
(LPQ). HPQ stores suspended tasks that have been lately executed by
the worker, while LPQ stores new tasks that have met task dependency
constraints. During scheduling, each worker extracts tasks from its HPQ to
LPQ, ensuring that a suspended task is prioritized over a new task. Such
prioritization allows efficient caching by ensuring that suspended tasks,
which have been recently executed, take precedence over new tasks in the
scheduling process. We leverage work-stealing queues [80] to support
our scheduling architecture. Only the queue owner [80] can pop/push a
task from/into one end of the queue, while multiple workers can steal a
task from the other end at the same time. When both of a worker’s queues
are empty, that worker tries to steal a task from another worker’s LPQ to
HPQ. This strategy not only balances the workload among the workers,
but also reduces the chances of different threads stealing (i.e., resuming)
the suspended task. As shown in Figure 5.3, the algorithm follows these
steps:

(b) Enqueue A: TaroRTL enqueues A into Worker 1’s LPQ.

102

!"#$

%

&'()*)*$%+,-./01

2

% 3

4

!5#$

%

678978

%

!:#$!;#$

<-=>*=$?

@7A$

B.=*;C

<-=>*=$D

4
3

4

2

E.*;F$2

4

2

4

2

7-FF$2 7-FF$2

!*#

!0# !G# !H# !/#

I00F-;"$%

I00F-;"$4

I00F-;"$2

2

3
3 4

&'()*)*$2

2

&'()*)*$4+,-./01 7-FF
&'()*)*

E.*;F
I00F-;"

37A

J+I

J+I$K-FF$

@7A

J+I

:)00*=

2 2

Figure 5.3: TaroRTL schedules a task graph using two CPU workers, one
GPU stream, and one I/O buffer. Each worker owns a high-priority task
queue (HPQ) and a low-priority task queue (LPQ) to prioritize resuming
a suspended task over a new task.

(c) Offload A and register a CUDA callback: Worker 1 executes and of-
floads A into the CUDA stream. Worker 1 then registers a CUDA callback
for A.

(d) Invoke the CUDA callback for A: After A finishes, CUDA runtime
invokes the callback that enqueues A back into Worker 1’s HPQ and
notifies Worker 1. This strategy ensures Worker 1 resumes A rather than
Worker 2, avoiding unnecessary context switches.

(e) Enqueue B, C, and D: Worker 1 resumes A for cleanup and resolving
task dependencies, and enqueues B, C, and D into its LPQ.

(f) Steal task from Worker 1: Worker 2’s queues are empty. Worker 2 steals
D from Worker 1’s LPQ. Since D has not yet started, this steal does not
induce context switches.

103

(g) Offload B and D: Worker 1 and 2 offload B and D into CUDA stream
and I/O buffer, respectively. Worker 1 registers a CUDA callback for B.

(g) Poll the status of D: Worker 2 creates a query task and enqueues the
task into its LPQ to poll the execution status of D.

(g) Multitask to C: Worker 1 multitasks to C.

(h) Invoke the CUDA callback for B: After B finishes, CUDA runtime
invokes the callback that enqueues B back into Worker 1’s HPQ and
notifies Worker 1.

(i) Resume D: Worker 2 resumes D for cleanup after verifying that D has
finished.

(i) Continue until complete: The scheduling process continues until each
worker completes its assigned task.

Coroutine-Aware Work Stealing

Conventional work-stealing algorithms cannot be used out of the box
due to the distinct performance characteristics between atomic and sus-
pendable executions. For instance, when a suspended task is ready, con-
ventional work-stealing algorithms notify any available CPU threads to
resume that task [81, 82, 34, 4]. This strategy may resume a task using
different CPU threads, resulting in frequent context switches and cache
misses.

Recently, C++20 released a new synchronization primitive of atomic
wait and notify, which allows a thread to wait on an atomic variable until
other threads change its value and notify that thread. This new feature has
inspired us to tackle this challenge by assigning each worker an atomic vari-
able to communicate with a specific worker while tracking each worker’s
state. This approach aligns with the goal of reducing context switches and

104

cache misses by ensuring that a task is mostly resumed by the same worker.
Furthermore, the new atomic features have shown improved performance
compared to condition variables, which are commonly used by existing
schedulers for synchronization purposes.

Algorithm 5 presents the pseudocode of our work-stealing algorithm
for each worker. Each worker has an atomic variable, state, with three
possible states: BUSY, SIGNALED, and SLEEP. BUSY indicates a worker
is actively processing tasks. SIGNALED signifies a worker has been no-
tified by other workers. SLEEP represents a worker who is inactive and
waiting for other workers to notify. Initially, each worker waits on the
SLEEP (line 2), ensuring its inactivity until scheduled by the scheduler.
When the schedule function is called, the scheduler evenly distributes the
source tasks to each worker’s LPQ. It then changes each worker’s state to
SIGNALED and notifies them, indicating they are ready to execute tasks.

Once a worker wakes up, it changes its state to BUSY and starts popping
tasks from its own HPQ to LPQ (lines 4-9). The worker first attempts
to pop a task from its HPQ. Since CUDA runtime or other workers can
simultaneously enqueue suspended tasks into HPQ (e.g., Figure 5.3 (d)
and (h)), we use steal to extract a task from the HPQ that avoids data
races. If the HPQ is empty, the worker proceeds to pop a task from its LPQ.
The LPQ is managed by the worker, and enqueuing/popping a LPQ by
other workers requires a lock [80]. In the event that both of the worker’s
queues are empty, the worker randomly selects another worker and steals
a task from its LPQ to HPQ (lines 10-22). The iteration continues until we
successfully steal a task or fail to steal a task after MAX_STEAL times.

To keep track of the overall progress, we maintain an atomic vari-
able, pending_tasks, that represents the total number of tasks ready
to be invoked. If no tasks are available at a given point, resulting in
pending_tasks becoming zero, the worker changes its state to SLEEP
and checks if its original state has been changed by another worker (lines

105

35-37). If the worker’s state has changed, indicating at least one other
worker has changed the state to SIGNALED, the worker continues to work.
Otherwise, the worker waits until other workers change its state and notify
it.

After a worker invokes a task, there are two situations: 1) The task is
complete (Figure 5.3 (e)). 2) The task is suspended (Figure 5.3 (g)). If
the task is complete, the worker checks the task’s successors and enqueues
them into its LPQ if the dependency constraints are met (lines 26-32). On
the other hand, if the task is suspended, indicating the worker has invoked
GPU or I/O tasks, the worker continues without blocking. Once invoked
GPU or I/O tasks are complete, CUDA runtime or a worker will enqueue
the suspended task back into the worker’s HPQ and notify the worker.

Algorithm 6 outlines how CUDA runtime or a worker enqueues a
task and notifies the worker. If worker is NULL, it means we want to
enqueue a new successor task. The current worker enqueues the task
into its LPQ and notifies one available worker (lines 1-14). This strategy
allows an available worker to steal a new task from the worker to avoid
under-utilization. We iterate through each worker and check if its state
is SLEEP using the Compare and Swap (CAS) operation. If a worker’s
state is SLEEP and its state is successfully changed to SIGNALED (i.e., the
CAS operation returns true), it is notified. Otherwise, we iterate to the
next worker. The process continues until either a worker is successfully
notified or all workers have been checked. If no worker is in SLEEP, we
exit the loop without notifying any worker.

If worker is not NULL, it means we want to enqueue the task into a
specific worker’s HPQ and notify that worker (lines 15-21). We require
a lock since HPQ may be simultaneously enqueued by other workers.
After the task is enqueued, we update the worker’s state to SIGNALED,
indicating this task is ready to resume. If the original state of the worker
was SLEEP, it implies that the worker is inactive and waiting to be notified.

106

We notify the worker using its state. However, if the worker’s state was not
SLEEP, implying that the worker is already active, we skip the notification.
This organization minimizes unnecessary notification overhead and helps
improve overall performance.

Execution Control Strategy

After a GPU or an I/O task finishes, we need to resume the task for cleanup,
such as freeing up GPU or I/O resources, releasing memory, and resolving
task dependencies. While Coroutine allows for the suspension of a task, it
does not automatically resume a suspended task. We need an execution
control strategy to track the execution status of a suspended task and
trigger its resumption.

!"#$%"

&'()*"+,+-./+

0,#*+

1$2030,#*+0)+

,')04"5+0,#*

67"8$0"+-./+

)9"5,03)'#

"':$"$";')03<=

>0,#*?+@)5*"5A

>BA+-./+0,#*+>8$C,D,$'84E)#0F$'8A

!"G3#0"5+,+

H/IJ+8,22B,8*

&'()*"+,+&KL+

0,#*+

H5",0"+,+

9)223'G+0,#*

1$2030,#*+0)+

,')04"5+0,#*

"':$"$";')03<=

>0,#*?+@)5*"5A
.)22+#0,0$#

>,A+&KL+0,#*+>3);$53'GA

!"#$%"

M)0+C)'" I)'"

E,'C2"+&KL+

5":$"#0#

Figure 5.4: A flowchart of our execution control strategy for (a) I/O and (b)
GPU tasks. Gray (Black) blocks represent actions performed by io_uring
(CUDA runtime).

107

Non-blocking I/O tasks

We leverage io_uring [83], a new asynchronous I/O framework in Linux
that provides efficient and scalable support for asynchronous I/O opera-
tions. io_uring implements a ring buffer structure to manage I/O requests.
This ring buffer allows for the efficient submission and retrieval of I/O
requests without the need for blocking system calls or copies. By incorpo-
rating C++ coroutine with io_uring, we are able to submit non-blocking
I/O tasks to the ring buffer and seamlessly multitask to a different task.

Figure 5.4 (a) illustrates our strategy for an I/O task. After invoking and
suspending an I/O task, the worker creates a polling task and multitasks
to another task. The polling task is also a coroutine and can be stolen by
other workers to repeatedly check the I/O status. It is a lightweight task
that incurs little CPU migration overhead when stolen. Once the status
becomes done, the worker that executes this polling task enqueues the
suspended task back into the invoked worker’s HPQ and notifies that
worker.

Non-blocking GPU tasks

Figure 5.4 (b) illustrates our strategy for a GPU task. To probe the
execution status of an offloaded GPU task, we utilize CUDA’s API,
cudaLaunchHostFunc, which allows us to register a callback for the of-
floaded GPU task. The worker then multitasks to other tasks without
being blocked. Once the offloaded GPU task is complete, CUDA runtime
invokes the callback to enqueue the suspended task back into the worker’s
HPQ and notify the worker. CUDA callback has a certain cost. In cases
where the cost of a GPU task is negligible (e.g., simulate a small design)
or CUDA callback is not applicable, we utilize a CUDA event to record the
execution status of an offloaded GPU task and poll the status, similar to
non-blocking I/O tasks.

108

Performance Improvement Analysis

In this section, we analyze the time complexity of TaroRTL. As different
designs have different task graph structures and task runtimes, it is not
practical to analyze the time complexity in a universal manner. Instead,
we focus on a more constrained scenario where TaroRTL can achieve the
best efficiency over non-coroutine-based approaches. Assuming on a
CPU-GPU simulation workload at timeframe P:

• There are nc CPU threads and ng GPU streams available.

• There are N identical tasks ready to be executed, where N is larger than
nc and ng.

• Each task consists of a CPU subtask sc with a cost of tc, followed by a
GPU subtask sg with a cost of tg.

By these assumptions, we can compute a lower bound on the time differ-
ence between TaroRTL (TTaroRTL) and a scheduler without multitasking
(T) at a specific timeframe. In the beginning, all nc CPU threads simulta-
neously execute the CPU subtask sc within nc tasks, incurring a cost of
tc. Subsequently, all ng GPU streams execute the GPU subtask sg within
these nc tasks, resulting in tg · ⌈nc/ng⌉. In TaroRTL, CPUs can multitask
to the next nc CPU subtasks while simultaneously waiting for the GPU to
complete the current nc GPU subtasks. As shown in Figure 5.5, the over-
lapped time of sc and sg is min{tc, tg · ⌈nc/ng⌉} per nc tasks. Specifically,
TaroRTL saves at least min{tc, tg · ⌈nc/ng⌉} per nc tasks. With ⌈N/nc⌉− 1
times,

T − TTaroRTL ⩾ (

⌈
N

nc

⌉
− 1) ·min{tc, tg ·

⌈
nc

ng

⌉
}.

The time difference expands as the number of tasks increases or the CPU
and GPU subtasks’ cost becomes larger.

109

!!"!"!!#!"#!$"%&'"()*+,(-(""

!$"!!!$#!"#"$".&'"()*+,(-("""
"!$"%&'"()*+,(-"/01231,4""""""""""""
"$$".&'"()*+,(-"/01231,4""
#!$"5"%&'"+321,4(
#$$"5".&'"(+21,6(

%&'

.&'

%&'

.&'

!!"

!!#

!!%

!!&

!$" !$#

!!"

!!#

!!%

!!&

!$" !$#

$%&'"!()"$* +
#!
#$
,-

7,8

7*8

Figure 5.5: The time difference between (a) a scheduler without coroutine
and (b) TaroRTL at a specific timeframe. In this example, nc is 2, ng is 1,
and tc > tg ·

⌈
nc

ng

⌉
.

5.5 Experimental Results
We evaluate the performance of TaroRTL on 1) three industrial designs:
Spinal, riscv-mini, and NVDLA, and 2) two micro-benchmarks: Divide
and Conquer (DC) and Wavefront (WF) [72]. We conducted our experi-
ments on a 3.2 GHz 64-bit Linux machine with one NVIDIA RTX 3080 ti
GPU and ten Intel i9-12900KF CPU cores. We compiled our programs with
CUDA NVCC 12.1 on a GCC 12.1 host compiler and enabled optimization
flag -O2 and -std=c++20. We use an equal number of CUDA streams and
CPU threads. All data is an average of ten runs. TaroRTL adopts heap
allocation by default to store the stack of a C++ coroutine.

CPU-GPU RTL Simulation

In this section, we analyze the performance benefits of TaroRTL with non-
blocking GPU tasks. We consider RTLflow as our baseline. RTLflow [4]

110

!"#$#%%&%'%()&*

!+,-%&*

.
!"#$%&'

()&*+,'-./
/

01#%2#3&'

4&*(5)
6&3'()723*

01#%2#3&'

4&*(5)
6&3'()723*

+"8'3#*9 :"8'3#*9

!

!

!

Figure 5.6: The heterogeneous RTL task graph in RTLflow. Each task
contains two CPU and GPU subtasks.

improves the throughput performance by running multiple input stim-
uli simultaneously using both CPU and GPU parallelisms. As shown in
Figure 5.6, RTLflow describes the RTL simulation workload as a heteroge-
neous task graph, where each task consists of four dependent CPU/GPU
subtasks. The size of the task graph is determined by the number of inputs,
the number of simulation cycles, and the chosen batch size. RTLflow splits
inputs into batches to allow more parallelism (i.e., more parallel lines).
For our experiments, we fixed the default batch size of 1024. However,
RTLflow lacks support for multitasking, resulting in a CPU thread wait-
ing for GPU tasks to finish. By scheduling RTLflow’s heterogeneous task
graph using TaroRTL, we are able to improve total runtime while using
fewer CPU resources.

Table 5.1 compares overall runtime between RTLflow and TaroRTL
on riscv-mini and NVDLA designs using different numbers of threads.
TaroRTL outperforms RTLflow in almost all scenarios. TaroRTL achieves at
least 1.4× speed-up and 1.6× speed-up on riscv-mini and NVDLA designs.
We can clearly see the proposed coroutine-based task graph scheduling

111

brings significant performance benefits to the CPU-GPU RTL simulation
workload. Compared to RTLflow, TaroRTL achieves 1.8× speed-up on
NVDLA. In the case of the Spinal design, RTLflow and TaroRTL exhibit
similar runtimes, and the advantage of coroutines is less pronounced
compared to other designs. When SLOC (lines of setting inputs) is small,
where the CPU overhead is extremely small, TaroRTL does not benefit
much from multitasking. However, modern designs typically have many
thousands of ELOC and hundreds of SLOC [60] where TaroRTL can stand
out.

0 5 10 15 20
0

50

100

150

#Cycles (K)

Ti
m

e(
s)

riscv-mini (4 threads)
TaroRTL
RTLflow

0 5 10 15 20
0

50

100

150

#Cycles (K)

Ti
m

e(
s)

riscv-mini (8 threads)
TaroRTL
RTLflow

0 5 10 15 20
0

200
400
600
800

1,000
1,200

#Cycles (K)

Ti
m

e(
s)

NVDLA (4 threads)
TaroRTL
RTLflow

0 5 10 15 20
0

200
400
600
800

1,000
1,200

#Cycles (K)

Ti
m

e(
s)

NVDLA (8 threads)
TaroRTL
RTLflow

Figure 5.7: Runtime growth over increasing numbers of cycles for TaroRTL
and RTLflow using four and eight threads.

Figure 5.7 shows the runtime growth over increasing numbers of cycles
for TaroRTL and RTLflow on different designs using four and eight threads.
TaroRTL outperforms RTLflow in all scenarios. Compared to RTLflow,
TaroRTL using four threads achieves 1.8× speed-up for riscv-mini design
at 20K cycles. The significant improvement on runtime demonstrates the

112

promise of our multitasking techniques. We can also clearly see the results
are aligned with the speedup analysis. For example, the performance gap
between TaroRTL and RTLflow continues to enlarge as we increase the
number of cycles (i.e., the number of tasks N).

0 2 4 6 8 10
200

400

600

800

#CPU threads

CP
U

ut
ili

za
tio

n
ra

te
(%

) riscv-mini (32768 input stimuli)

TaroRTL
RTLflow

0 2 4 6 8 1030
40
50
60
70
80

#CPU threads
Ti

m
e(

s)

riscv-mini (32768 input stimuli)

TaroRTL
RTLflow

Figure 5.8: Average CPU utilization rate reported by /usr/bin/time and
runtime decrease over increasing numbers of CPU threads for TaroRTL
and RTLflow on the riscv-mini design.

Figure 5.8 shows the CPU utilization rate and runtime decrease over
increasing numbers of threads on the riscv-mini design. TaroRTL using
362% CPU achieves 1.4× faster than RTLflow using 910% CPU. riscv-mini
is a midsize design that does not induce large CPU computation. However,
RTLflow requires CPUs to keep spinning until GPU finishes its operations,
resulting in an unnecessarily high CPU utilization rate.

RTL Simulation with I/O

In this section, we study the performance benefits of RTL simulation with
non-blocking I/O tasks. We consider Verilator, which supports VCD file
dumping, as our baseline. Verilator is a single-stimulus simulator. For
multi-stimulus simulation, the de facto way is to create multiple instances
of Verilator and run independent input stimulus in parallel [4]. After
an evaluation of the design, each Verilator stores traces in a buffer and
dumps the buffer to a file once it is full. Since Verilator does not support
multitasking, it requires a CPU thread to wait until I/O dumping finishes.

113

By enabling our non-blocking I/O using TaroRTL, we are able to improve
the simulation efficiency.

Figure 5.9 illustrates the achieved speed-up by TaroRTL over Verilator
at different numbers of input stimuli using eight threads on riscv-mini.
When the number of input stimuli equals 8, Verilator is faster due to the
limited parallelism available for eight threads. However, as the number
of input stimuli exceeds 8, where parallelism becomes more abundant
(i.e., more independent tasks), TaroRTL starts to outperform Verilator.
Since RTL simulation typically involves many input stimuli on the same
design [60, 4], TaroRTL’s ability to handle larger parallelism provides a
significant advantage.

1 4 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5
1

1.5
2

1

#Input stimuli (× 8)

Sp
ee

d-
up

riscv-mini (Achieved speed-up by TaroRTL over Verilator)

Figure 5.9: Achieved speed-up by TaroRTL over Verilator at different
numbers of input stimuli using eight threads for 3K cycles.

Efficiency of Coroutine-Aware Work Stealing

We finally study the efficiency of our coroutine-aware work stealing to
demonstrate its potential capability beyond RTL simulation. We consider
two state-of-the-art task schedulers, Boost Fiber [84] and Taskflow [34],
that support CPU-GPU scheduling as our baselines. Boost Fiber is a C++
library that utilizes a cooperative scheduling mechanism to achieve multi-
tasking. They provide fiber, a lightweight thread that can be suspended
and resumed independently. However, when fibers are migrated between

114

different CPUs, there is an inherent CPU migration overhead. As a result,
fibers undergo frequent migration, and the aggregated overhead becomes
significant. Taskflow is a task graph scheduling system that has been
adopted by many EDA algorithms, including RTLflow [4]. However, it
does not support multitasking in a task graph. We consider two com-
mon task graphs as our micro-benchmarks. Divide and Conquer (DC)
defines a complete binary tree, and Wavefront (WF) defines a wavefront
that propagates task dependencies from the top-left task all the way to
the bottom-right task. Both micro-benchmarks are representative of mod-
ern data-driven task graphs such as iterative algorithms, data processing
pipelines, and simulation [34]. In our task graph, each task consists of 300
repeated CPU and GPU subtasks, where each GPU subtask generates a
random number and adds it to each element in a 10K-element vector, and
each CPU subtask sorts the vector.

Table 5.2 compares various statistics among Taskflow, Boost Fiber, and
TaroRTL on WF with 10K tasks using eight threads. The results clearly
demonstrate the performance advantage of our algorithm. TaroRTL ex-
hibits the lowest number of context switches, CPU migrations, and cache
misses. Without our coroutine-aware work stealing, Boost fiber struggles
to maintain task continuity on the same thread, leading to significant CPU
migration overhead. Such overhead outweighs the performance benefit
derived from multitasking. Figure 5.10 compares runtime growth over
increasing graph size among Taskflow, Fiber, and TaroRTL using eight
threads. TaroRTL outperforms all other schedulers in all scenarios. Com-
pared to Fiber and Taskflow, TaroRTL achieves 4.6× and 3.9× speed-up
on DC with 10K tasks. The gap continues to enlarge as we increase the
graph size.

115

0 2 4 6 8
0

50

100

150

#Tasks (K)

Ti
m

e(
s)

Divide and Conquer

TaroRTL
Fiber

Taskflow

0 2 4 6 8 10
0

50

100

150

#Tasks (K)

Ti
m

e(
s)

Wavefront
TaroRTL

Fiber
Taskflow

Figure 5.10: Runtime comparison among Taskflow, Fiber, and TaroRTL for
DC and WF task graphs using eight threads.

5.6 Conclusion
In this chapter, we have introduced TaroRTL, a coroutine-based task graph
scheduler for RTL simulation. TaroRTL has introduced a coroutine-based
task graph scheduling model to enable multitasking in a task graph.
TaroRTL has also introduced a coroutine-aware work-stealing algorithm
to reduce unnecessary context switches. Compared to RTLflow, TaroRTL
can further achieve 40–80% speed-up while using fewer CPU resources
to simulate large industrial designs. In this work, Dian-Lun Lin was the
primary contributor, responsible for the majority of the research and de-
velopment efforts. Tsung-Wei Huang supervised the research, providing
guidance and oversight throughout the project. All authors participated
in discussing the results and contributed to the preparation and review of
the final manuscript.

116

Algorithm 5: Coroutine-aware work-stealing algorithm
1 worker← this_worker();/* current worker */
2 worker.state.wait(SLEEP);
3 do
4 worker.state.store(BUSY);
5 do

/* get from worker’s own HPQ to LPQ */
6 task← worker.HPQ.steal();
7 if task == NULL then
8 task← worker.LPQ.pop();
9 end

/* steal from another worker’s LPQ to HPQ */
10 if task == NULL then
11 cnt← 0;
12 while cnt++ < MAX_STEAL do
13 aworker← random_select();
14 task← aworker.LPQ.steal();
15 if task == NULL then
16 task← aworker.HPQ.steal();
17 end
18 if task ! = NULL then
19 break;
20 end
21 end
22 end

/* invoke the task and enqueue successors */
23 if task ! = NULL then
24 pending_tasks.fetch_sub();
25 invoke(task);
26 if task.is_done() then
27 for succ : task.successors do
28 if succ.dependency.is_met() then
29 enqueue_notify(succ, NULL);
30 end
31 end
32 end
33 end
34 while pending_tasks.load() > 0;
35 if worker.state.exchange(SLEEP) == BUSY then

/* wait to be notified */
36 worker.state.wait(SLEEP);
37 end
38 while !stop;

117

Algorithm 6: enqueue_notify(task, worker)
Input: task: a suspended task to be enqueued
Input: worker: a worker to be notified

1 if worker == NULL then
/* enqueue to current worker’s own LPQ */

2 worker← this_worker();
3 worker.LPQ.push(task);
4 pending_tasks.fetch_add();

/* notify one SLEEP worker */
5 cnt← 1;
6 do
7 idx← (worker.idx+ cnt)%NUM_WORKERS;
8 tmp← SLEEP;
9 if workers[idx].state.CAS(tmp, SIGNALED) then

10 workers[idx].state.notify_one();
11 return;
12 end
13 while ++cnt < NUM_WORKERS;
14 end
15 else

/* enqueue and notify a specific worker */
16 lock{worker.HPQ.push(task)};
17 pending_tasks.fetch_add();
18 if worker.state.exchange(SIGNALED) == SLEEP then
19 worker.state.notify_one();
20 end
21 end

118

Design ELOC SLOC #Threads RTLflow TaroRTL Speed-up
2 36s 35s 2.9%
4 20s 21s -

Spinal 9654 6 6 16s 17s -
8 11s 14s -

10 11s 14s -
2 79s 44s 79.5%
4 61s 34s 79.4%

riscv-mini 10935 340 6 55s 35s 57.1%
8 49s 35s 40.0%

10 50s 36s 38.9%
2 1082s 598s 80.9%
4 600s 337s 78.0%

NVDLA 560412 860 6 482s 284s 69.7%
8 376s 242s 55.4%

10 379s 236s 60.6%
Table 5.1: Comparison between RTLflow and TaroRTL on Spinal, riscv-
mini, and NVDLA designs using different numbers of threads for com-
pleting 32768 input stimuli. ELOC and SLOC represent lines of code for
evaluation and lines of code for setting inputs, respectively. Bold texts rep-
resent the best results. All simulation results match the golden reference
provided by RTLflow.

Statistics Taskflow Fiber TaroRTL
context switches 38.7M 14.2M 9.3M
CPU migrations 63.4K 21.6K 13.7K

L1-dcache-load-misses 19.0B 9.0B 7.5B
L1-icache-load-misses 60.1B 24.9B 16.9B

LLC-load-misses 36.0M 11.0M 8.2M
LLC-store-misses 29.1M 6.3M 5.7M

Runtime 149.5s 170.2s 38.6s

Table 5.2: Comparison among Taskflow, Boost Fiber, and TaroRTL on a
WF task graph with 10K nodes using eight threads.

119

6 conclusion

In conclusion, this thesis presents several significant advancements in the
field of heterogeneous computing and logic simulation through novel algo-
rithms and frameworks designed to enhance performance and efficiency.
The key contributions and findings of this research can be summarized as
follows:

1. SNIG: A Novel Inference Algorithm for Large Sparse DNNs. We have
introduced SNIG, an efficient inference engine for large sparse deep
neural networks. We have demonstrated that SNIG’s task graph
decomposition can scale to various sizes of sparse DNNs and input
data, achieving a 2.3× runtime speed-up over existing methods by
avoiding unnecessary computations and synchronization overheads.

2. cudaFlow: Efficient GPU Computation using Task Graph Parallelism. We
have proposed a lightweight task graph programming framework to
simplify the development of GPU applications using CUDA graphs.
We have showed that cudaFlow and cudaFlowCapturer can achieve
performance comparable to optimally constructed CUDA graphs
while reducing the complexity of graph management for users.

3. RTLflow: A GPU Acceleration Flow for RTL Simulation with Batch Stim-
ulus. We have developed RTLflow, a framework for accelerating RTL
simulation using GPUs. We have demonstrated a 40× runtime speed-
up in RTL simulation by leveraging GPU parallelism and efficient
task scheduling techniques.

4. GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm
with Multiple Inputs. We have introduced GenFuzz, a hardware fuzzer
that employs a genetic algorithm to enhance the efficiency of hard-
ware fuzzing. We have achieved up to an 80× speed-up in runtime

120

compared to existing fuzzers, showcasing the effectiveness of the
genetic algorithm and multi-input approach in identifying hardware
bugs more efficiently.

5. TaroRTL: Accelerating RTL Simulation using Coroutine-based Heteroge-
neous Task Graph Scheduling. We have proposed TaroRTL, a coroutine-
based task graph scheduler designed to optimize RTL simulation.
We have showed that TaroRTL reduces context switches, CPU migra-
tions, and cache misses, resulting in a 70% speed-up over traditional
scheduling methods while using fewer CPU resources.

These contributions collectively advance the state of the art in heteroge-
neous computing and hardware simulation, providing practical frame-
works and algorithms that can be adopted in various high-performance
computing applications. The research emphasizes the importance of ef-
ficient task graph management, parallelism, and innovative algorithm
design in achieving superior computational performance.

Future work should investigate the applicability of SNIG to other ma-
chine learning models, support more complex workflows in cudaFlow
with dynamic task dependencies and real-time data processing, explore
the scalability of RTLflow for larger and more complex hardware designs,
incorporate advanced genetic algorithms and machine learning techniques
into GenFuzz to further enhance its efficiency and coverage capabilities,
and generalize TaroRTL into a generic library with a new programming
model that can be easily integrated with various applications. By pursuing
these directions, the frameworks and algorithms developed in this thesis
can be further expanded and refined, contributing to ongoing advance-
ments in heterogeneous computing and hardware simulation technologies.

121

bibliography

[1] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett,
and S. Samsi, “Sparse deep neural network graph challenge,” IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–7, 2019.

[2] D.-L. Lin and T.-W. Huang, “A novel inference algorithm for large
sparse neural network using task graph parallelism,” in IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1–7.

[3] “NVIDIA Nsight Systems,” "https://developer.nvidia.com/
nsight-systems.

[4] D.-L. Lin, H. Ren, Y. Zhang, B. Khailany, and T.-W. Huang, “From
RTL to CUDA: A GPU acceleration flow for RTL simulation with
batch stimulus,” in Proceedings of the 51st International Conference on
Parallel Processing (ICPP), 2022, pp. 1–12.

[5] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding,” arXiv:1510.00149, 2015.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and < 0.5MB model size,” arXiv:1602.07360, 2016.

[7] M. Bisson and M. Fatica, “A GPU implementation of the sparse deep
neural network graph challenge,” in IEEE High Performance Extreme
Computing Conference (HPEC), 2019, pp. 1–8.

[8] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and z. Chen, “GPipe: Efficient Training of
Giant Neural Networks using Pipeline Parallelism,” in Advances in
neural information processing systems (NIPS), 2019, pp. 103–112.

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems

122

[9] C. Yu, S. Royuela, and E. Quiñones, “OpenMP to CUDA Graphs: A
compiler-based transformation to enhance the programmability of
nvidia devices,” in Proceedings of the 23th International Workshop on
Software and Compilers for Embedded Systems, 2020, p. 42–47.

[10] B. Qiao, M. Akif Özkan, J. Teich, and F. Hannig, “The Best of Both
Worlds: Combining CUDA Graph with an image processing DSL,”
in 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1–6.

[11] T. Blattner, W. Keyrouz, S. S. Bhattacharyya, M. Halem, and M. Brady,
“A hybrid task graph scheduler for high performance image process-
ing workflows,” J. Signal Process. Syst., p. 457–467, 2017.

[12] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast
task-based parallel programming using modern C++,” in IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2019,
pp. 974–983.

[13] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. F. Wong, “A modern c++
parallel task programming library,” in ACM Multimedia Conference,
2019, p. 2284–2287.

[14] T.-W. Huang, “A general-purpose parallel and heterogeneous task
programming system for VLSI CAD,” in IEEE/ACM International
Conference on Computer-aided Design (ICCAD), 2020, pp. 1–2.

[15] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-
taskflow: A general-purpose parallel task programming system at
scale,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 40, no. 8, pp. 1687–1700, 2020.

[16] T.-W. Huang, D.-L. Lin, Y. Lin, and C.-X. Lin, “Taskflow: A general-
purpose parallel and heterogeneous task programming system,”

123

IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 41, no. 5, pp. 1448–1452, 2021.

[17] C.-X. Lin, T.-W. Huang, G. Guo, and M. Wong, “An efficient and com-
posable parallel task programming library,” in IEEE High Performance
Extreme Computing (HPEC), 2019, pp. 1–7.

[18] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns,” in Journal of parallel and distributed computing, vol. 74,
no. 12, 2014, pp. 3202–3216.

[19] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independence with logical regions,” in SC ’12: Pro-
ceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012, pp. 1–11.

[20] W. Snyder, “Verilator 4.0: open simulation goes multithreaded,”
https://veripool.org/papers/Verilator_v4_Multithreaded_
OrConf2018.pdf, 2018.

[21] S. Beamer and D. Donofrio, “Efficiently exploiting low activity factors
to accelerate RTL simulation,” in 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6.

[22] C. X. Wolf, “Yosys,” https://yosyshq.net/yosys/, 2012.

[23] H. Qian and Y. Deng, “Accelerating RTL simulation with GPUs,”
in IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2011, pp. 687–693.

[24] Y. Zhu, B. Wang, and Y. Deng, “Massively parallel logic simulation
with GPUs,” in ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 16, no. 3, 2011, pp. 1–20.

https://veripool.org/papers/Verilator_v4_Multithreaded_OrConf2018.pdf
https://veripool.org/papers/Verilator_v4_Multithreaded_OrConf2018.pdf
https://yosyshq.net/yosys/

124

[25] D. Chatterjee, A. Deorio, and V. Bertacco, “Gate-level simulation
with GPU computing,” in ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 16, no. 3, 2011, pp. 1–26.

[26] Uri Tal, “RocketSim: A GPU-based simulation accelerator
for chip verification,” https://on-demand-gtc.gputechconf.com/
gtcnew/speakerName.php?speaker=Uri+Tal, 2013.

[27] Y. Zhang, H. Ren, A. Sridharan, and B. Khailany, “GATSPI: GPU
accelerated gate-level simulation for power improvement,” in Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference (DAC),
2022, pp. 1231–1236.

[28] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-directed fuzz testing of RTL on FPGAs,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018, pp.
1–8.

[29] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “DirectFuzz: Automated test generation for RTL designs
using directed graybox fuzzing,” in ACM/IEEE Design Automation
Conference (DAC), 2021.

[30] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DIFUZZRTL:
Differential fuzz testing to find CPU bugs,” in IEEE Symposium on
Security and Privacy (SP), 2021, pp. 1286–1303.

[31] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi,
and J. Rajendran, “TheHuzz: Instruction fuzzing of processors using
golden-reference models for finding software-exploitable vulnerabil-
ities,” in 31st USENIX Security Symposium (USENIX Security), 2022,
pp. 3219–3236.

https://on-demand-gtc.gputechconf.com/gtcnew/speakerName.php?speaker=Uri+Tal
https://on-demand-gtc.gputechconf.com/gtcnew/speakerName.php?speaker=Uri+Tal

125

[32] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in 31st USENIX Security
Symposium (USENIX Security), 2022, pp. 3237–3254.

[33] H. Wang and S. Beamer, “RepCut: Superlinear parallel RTL simu-
lation with replication-aided partitioning,” in Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Volume 3, 2023, pp. 572–
585.

[34] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
lightweight parallel and heterogeneous task graph computing sys-
tem,” in IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 33, no. 6, 2021, pp. 1303–1320.

[35] W. L. Lee, D.-L. Lin, T.-W. Huang, S. Jiang, T.-Y. Ho, Y. Lin, and B. Yu,
“G-kway: Multilevel GPU-accelerated k-way graph partitioner,” in
ACM/IEEE Design Automation Conference (DAC), 2024.

[36] B. Zhang, L. Dian-Lun, C. Chang, C.-H. Chiu, B. Wang, L. W. Luan,
C. Chih-Chun, F. Donghao, and H. Tsung-Wei, “G-PASTA: GPU
Accelerated Partitioning Algorithm for Static Timing Analysis,” in
ACM/IEEE Design Automation Conference (DAC), 2024.

[37] C. Chang, T.-W. Huang, D.-L. Lin, S. Lin, and G. Guo, “Ink: Efficient k-
critical path generation,” in ACM/IEEE Design Automation Conference
(DAC), 2024.

[38] C. J. Williams and J. Elliott, “Libfork: portable continuation-stealing
with stackless coroutines,” arXiv preprint arXiv:2402.18480, 2024.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing,” in Proceedings of the 2019 Conference of the North American

126

Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[40] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in Transla-
tion: Contextualized word vectors,” in Advances in neural information
processing systems (NIPS), vol. 30, 2017.

[41] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” in OpenAI
blog, vol. 1, no. 8, 2018, p. 9.

[42] J. Kepner, V. Gadepally, H. Jananthan, L. Milechin, and S. Samsi,
“Sparse deep neural network exact solutions,” in IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 2018, pp. 1–8.

[43] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and
B. Hechtman, “Mesh-TensorFlow: Deep learning for supercomput-
ers,” in Advances in neural information processing systems (NIPS), 2018,
pp. 10 414–10 423.

[44] M. Grossman, C. Thiele, M. Araya-Polo, F. Frank, F. O. Alpak, and
V. Sarkar, “A survey of sparse matrix-vector multiplication perfor-
mance on large matrices,” arXiv preprint arXiv:1608.00636, 2016.

[45] X. Liu, J. Pool, S. Han, and W. J. Dally, “Efficient sparse-winograd
convolutional neural networks,” in International Conference on Learning
Representations (ICLR), 2018.

[46] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,”
in ACM International Symposium on Computer Architecture (ISCA),
2017, p. 27–40.

127

[47] Z. Yao, S. Cao, W. Xiao, C. Zhang, and L. Nie, “Balanced sparsity for
efficient DNN inference on GPU,” in Proceedings of the AAAI conference
on artificial intelligence (AAAI), vol. 33, no. 01, 2019, pp. 5676–5683.

[48] J. A. Ellis and S. Rajamanickam, “Scalable inference for sparse deep
neural networks using kokkos kernels,” in IEEE High Performance
Extreme Computing Conference (HPEC), 2019, pp. 1–7.

[49] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring hidden dimensions
in parallelizing convolutional neural networks.” vol. 2279, p. 2288,
2018.

[50] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[51] M. Wang, C.-c. Huang, and J. Li, “Unifying data, model and hy-
brid parallelism in deep learning via tensor tiling,” arXiv preprint
arXiv:1805.04170, 2018.

[52] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Gener-
alized pipeline parallelism for DNN training,” in Proceedings of the
27th ACM symposium on operating systems principles (SOSP), 2019, pp.
1–15.

[53] A. Petrowski, G. Dreyfus, and C. Girault, “Performance analysis of a
pipelined backpropagation parallel algorithm,” IEEE Transactions on
Neural Networks, vol. 4, no. 6, pp. 970–981, 1993.

[54] “CUDA Graph,” https://devblogs.nvidia.com/cuda-graphs/.

[55] J. Kepner and R. Robinett, “Radix-net: Structured sparse matrices for
deep neural networks,” in IEEE international parallel and distributed
processing symposium workshops (IPDPSW), 2019, pp. 268–274.

https://devblogs.nvidia.com/cuda-graphs/

128

[56] “NVIDIA Visual Profiler,” https://developer.nvidia.com/
nvidia-visual-profiler.

[57] “Effortless CUDA Graphs,” https://www.nvidia.com/en-us/
on-demand/session/gtcspring21-s32082/.

[58] “CUDA Graph in TensorFlow,” "https://www.nvidia.com/en-us/
on-demand/session/gtcspring21-s31312/".

[59] “NVIDIA CUDA Graph example,” "https://github.com/NVIDIA/
cuda-samples/blob/master/Samples/simpleCudaGraphs/
simpleCudaGraphs.cu.

[60] Y. Zhang, H. Ren, and B. Khailany, “Opportunities for RTL and gate
level simulation using GPUs,” in Proceedings of the 39th International
Conference on Computer-Aided Design, 2020, pp. 1–5.

[61] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic Design Automa-
tion: Synthesis, Verification, and Test. Morgan Kaufmann Publishers
Inc., 2009.

[62] L. Liu and S. Vasudevan, “Efficient validation input generation in
RTL by hybridized source code analysis,” in 2011 Design, Automation
Test in Europe, 2011, pp. 1–6.

[63] “NVIDIA Deep Learning Accelerator Design (NVDLA),” "http://
nvdla.org/.

[64] V. Sarkar, “Partitioning and scheduling parallel programs for exe-
cution on multiprocessors,” Ph.D. dissertation, Stanford University,
1987.

[65] C.-H. Chiu and T.-W. Huang, “Efficient timing propagation with
simultaneous structural and pipeline parallelisms,” in ACM/IEEE
Design Automation Conference (DAC), 2022, pp. 1388–1389.

https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32082/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32082/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31312/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31312/
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/simpleCudaGraphs/simpleCudaGraphs.cu
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/simpleCudaGraphs/simpleCudaGraphs.cu
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/simpleCudaGraphs/simpleCudaGraphs.cu
http://nvdla.org/
http://nvdla.org/

129

[66] W. R. Gilks, S. Richardson, and D. Spiegelhalter, in Markov chain
Monte Carlo in practice. CRC press, 1995.

[67] W. K. Hastings, in Monte Carlo sampling methods using Markov chains
and their applications. Oxford University Press, 1970.

[68] “Spinal,” "https://github.com/SpinalHDL/VexRiscv.

[69] “riscv-mini,” "https://github.com/ucb-bar/riscv-mini.

[70] C.-H. Chiu and T.-W. Huang, “Composing pipeline parallelism using
control Taskflow graph,” in ACM HPDC, 2022, pp. 283––284.

[71] C.-X. Lin, T.-W. Huang, and M. D. F. Wong, “An efficient work-stealing
scheduler for task dependency graph,” in IEEE 26th international
conference on parallel and distributed systems (ICPADS), 2020, pp. 64–
71.

[72] D.-L. Lin and T.-W. Huang, “Efficient GPU computation using task
graph parallelism,” in 27th International Conference on Parallel and
Distributed Computing (Euro-Par), 2021, pp. 435–450.

[73] “NVIDIA System Management Interface,” "https://developer.nvidia.
com/nvidia-system-management-interface.

[74] K. Tan, C. Goh, Y. Yang, and T. Lee, “Evolving better population distri-
bution and exploration in evolutionary multi-objective optimization,”
European Journal of Operational Research, 2006.

[75] D. S. Hochba, “Approximation algorithms for NP-Hard problems,”
SIGACT News, 1997.

[76] “Boom issue page,” https://github.com/riscv-boom/riscv-boom/
issues.

https://github.com/SpinalHDL/VexRiscv
https://github.com/ucb-bar/riscv-mini
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/riscv-boom/riscv-boom/issues
https://github.com/riscv-boom/riscv-boom/issues

130

[77] D. Appello, P. Bernardi, A. Calabrese, S. Littardi, G. Pollaccia, S. Quer,
V. Tancorre, and R. Ugioli, “Accelerated analysis of simulation dumps
through parallelization on multicore architectures,” in 24th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2021, pp. 69–74.

[78] “C++ Coroutine.” https://en.cppreference.com/w/cpp/language/
coroutines.

[79] D.-L. Lin and T.-W. Huang, “Accelerating large sparse neural network
inference using GPU task graph parallelism,” in IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 33, no. 11, 2022, pp.
3041–3052.

[80] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli, “Correct and
efficient work-stealing for weak memory models,” in ACM SIGPLAN
Notices, vol. 48, no. 8, 2013, pp. 69–80.

[81] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” in Proceedings of the tenth
annual ACM symposium on Parallel algorithms and architectures (SPAA),
1998, pp. 119–129.

[82] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “XKaapi: A runtime
system for data-flow task programming on heterogeneous architec-
tures,” in IEEE 27th International Symposium on Parallel and Distributed
Processing (IPDPS), 2013, pp. 1299–1308.

[83] “Efficient io with io_uring,” https://kernel.dk/io_uring.pdf.

[84] “Boost fiber,” https://www.boost.org/doc/libs/1_80_0/libs/fiber/
doc/html/index.html.

 https://en.cppreference.com/w/cpp/language/coroutines
 https://en.cppreference.com/w/cpp/language/coroutines
https://kernel.dk/io_uring.pdf
https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/fiber/doc/html/index.html

	Contents
	List of Tables
	List of Figures
	Abstract
	Previous Work
	SNIG: A Novel Inference Algorithm for Large Sparse Neural Network using Task Graph Parallelism
	Abstract
	Introduction
	Problem Formulation of Large Sparse DNN Inference
	State of the Art: The BF and Pipeline Methods
	SNIG
	Experimental Results
	Conclusion

	cudaFlow: Efficient GPU Computation using Task Graph Parallelism
	Abstract
	Introduction
	The Proposed GPU Task Graph Programming Model
	Transform a cudaFlowCapturer to a CUDA Graph
	Experimental Results
	Conclusion

	RTLflow: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus
	Abstract
	Introduction
	Background and Motivation
	RTLflow
	Experimental Results
	Conclusion

	GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm with Multiple Inputs
	Abstract
	Introduction
	Background
	GenFuzz
	Experimental Results
	Conclusion

	TaroRTL: Accelerating RTL Simulation using Coroutine-based Heterogeneous Task Graph Scheduling
	abstract
	Introduction
	The Motivation of Using Coroutine in RTL Simulation
	TaroRTL
	Experimental Results
	Conclusion

	Conclusion
	Bibliography

